22 research outputs found

    Who is Gambling? Finding Cryptocurrency Gamblers Using Multi-modal Retrieval Methods

    Full text link
    With the popularity of cryptocurrencies and the remarkable development of blockchain technology, decentralized applications emerged as a revolutionary force for the Internet. Meanwhile, decentralized applications have also attracted intense attention from the online gambling community, with more and more decentralized gambling platforms created through the help of smart contracts. Compared with conventional gambling platforms, decentralized gambling have transparent rules and a low participation threshold, attracting a substantial number of gamblers. In order to discover gambling behaviors and identify the contracts and addresses involved in gambling, we propose a tool termed ETHGamDet. The tool is able to automatically detect the smart contracts and addresses involved in gambling by scrutinizing the smart contract code and address transaction records. Interestingly, we present a novel LightGBM model with memory components, which possesses the ability to learn from its own misclassifications. As a side contribution, we construct and release a large-scale gambling dataset at https://github.com/AwesomeHuang/Bitcoin-Gambling-Dataset to facilitate future research in this field. Empirically, ETHGamDet achieves a F1-score of 0.72 and 0.89 in address classification and contract classification respectively, and offers novel and interesting insights

    A novel nanoparticle drug delivery system based on PEGylated hemoglobin for cancer therapy

    Get PDF
    Proteins such as albumin, gelatin, casein, transferrin, and collagen are widely used as drug delivery systems. However, only albumin-based paclitaxel (PTX) formulation AbraxaneVR (PTX-albumin NPs prepared by nab-technology) has been successfully developed for treating metastatic breast cancer clinically due to abundant materials, simple industrial scale-up process, and well tumor-targeting ability. Hemoglobin (Hb) is another protein used for drug delivery with similar advantages. In this study, we successfully synthesized PEG-Hb nanoparticles loading with PTX based on previously well-established acid-denatured method. PEG-Hb-PTX NPs showed enhanced cellular uptake and great cellular inhibition ability in vitro. Moreover, our animal study showed that PEGylated NPs greatly accumulated in tumor tissues and exhibited excellent anticancer activity in vivo. We found that PEG-Hb-PTX NPs possess a better in vivo antitumor effect than the commercially available TaxolVR formulation. We believe that PEG-Hb has great potential as an efficient drug delivery system for further clinic study

    Immunization against inhibin DNA vaccine as an alternative therapeutic for improving follicle development and reproductive performance in beef cattle

    Get PDF
    The objective of the present study was to investigate the potential role of immunization against INH on follicular development, serum reproductive hormone (FSH, E2, and P4) concentrations, and reproductive performance in beef cattle. A total of 196 non-lactating female beef cattle (4-5 years old) with identical calving records (3 records) were immunized with 0.5, 1.0, 1.5, or 2.0 mg [(T1, n = 58), (T2, n = 46), (T3, n = 42) and (T4, n = 36), respectively] of the pcISI plasmid. The control (C) group (n = 14) was immunized with 1.0 mL 0.9% saline. At 21d after primary immunization, all beef cattle were boosted with half of the primary immunization dose. On day 10 after primary immunization, the beef cattle immunized with INH DNA vaccine evidently induced anti-INH antibody except for the T1 group. The T3 group had the greatest P/N value peak among all the groups. The anti-INH antibody positive rates in T2, T3 and T4 groups were significantly higher than that in C and T1 groups. RIA results indicated that serum FSH concentration in T2 group increased markedly on day 45 after booster immunization; the E2 amount in T3 group was significantly increased on day 10 after primary immunization, and the levels of E2 also improved in T2 and T3 groups after booster immunization; the P4 concentration in T2 group was significantly improved on day 21 after primary immunization. Ultrasonography results revealed that the follicles with different diameter sizes were increased, meanwhile, the diameter and growth speed of ovulatory follicle were significantly increased. Furthermore, the rates of estrous, ovulation, conception, and twinning rate were also significantly enhanced. These findings clearly illustrated that INH DNA vaccine was capable of promoting the follicle development, thereby improving the behavioral of estrous and ovulation, eventually leading to an augment in the conception rates and twinning rate of beef cattle

    Using standardized patients to assess the quality of type 2 diabetes care among primary care providers and the health system: Evidence from rural areas of western China

    Get PDF
    Background Improving type 2 diabetes (T2D) care is key to managing and reducing disease burden due to the growing prevalence of diabetes worldwide, but research on this topic, specifically from rural areas, is limited. This study uses standardized patients (SPs) to assess T2D care quality among primary care providers to access the healthcare system in rural China. Methods Using multi-stage random sampling, health facilities, providers, and households were selected. SPs were used to evaluate providers' T2D care quality and a questionnaire survey was used to collect patient sorting behaviors from households. Logistic regression was used to explore factors correlated with T2D care quality. Provider referral and treatment rates were combined with patient sorting behaviors to assess the overall quality of T2D management by rural China's healthcare system. Results A total of 126 providers, 106 facilities, and 750 households were enrolled into this study. During SP interactions, 20% of rural providers followed the national guidelines for T2D consultation, 32.5% gave correct treatment, and 54.7% provided lifestyle suggestions. Multi-variable regression results showed that providers who had earned practicing certificates (β = 1.56, 95% CI: 0.44, 2.69) and saw more patients (β = 0.77, 95%: 0.25, 1.28) were more likely to use a higher number of recommended questions and perform better examinations, whereas providers who participated in online training were less likely to practice these behaviors (β = −1.03, 95%: −1.95, −0.11). The number of recommended questions and examination (NRQE) was the only significant correlated factor with correct treatment (marginal effect = 0.05, 95%: 0.01, 0.08). Throughout the rural healthcare system, 23.7% of T2D patients were treated correctly.ConclusionThe quality of T2D care in rural western China, especially throughout the consultation and treatment process during a patient's first visit, is poor. Online training may not improve T2D care quality and low patient volume was likely to indicate poor care quality. Further research is needed to explore interventions for improving T2D care quality in rural China's healthcare system

    Effects of Electrical Stimulation on Articular Cartilage Regeneration with a Focus on Piezoelectric Biomaterials for Articular Cartilage Tissue Repair and Engineering

    No full text
    There is increasing evidence that chondrocytes within articular cartilage are affected by endogenous force-related electrical potentials. Furthermore, electrical stimulation (ES) promotes the proliferation of chondrocytes and the synthesis of extracellular matrix (ECM) molecules, which accelerate the healing of cartilage defects. These findings suggest the potential application of ES in cartilage repair. In this review, we summarize the pathogenesis of articular cartilage injuries and the current clinical strategies for the treatment of articular cartilage injuries. We then focus on the application of ES in the repair of articular cartilage in vivo. The ES-induced chondrogenic differentiation of mesenchymal stem cells (MSCs) and its potential regulatory mechanism are discussed in detail. In addition, we discuss the potential of applying piezoelectric materials in the process of constructing engineering articular cartilage, highlighting the important advances in the unique field of tissue engineering

    Effects of Electrical Stimulation on Articular Cartilage Regeneration with a Focus on Piezoelectric Biomaterials for Articular Cartilage Tissue Repair and Engineering

    No full text
    There is increasing evidence that chondrocytes within articular cartilage are affected by endogenous force-related electrical potentials. Furthermore, electrical stimulation (ES) promotes the proliferation of chondrocytes and the synthesis of extracellular matrix (ECM) molecules, which accelerate the healing of cartilage defects. These findings suggest the potential application of ES in cartilage repair. In this review, we summarize the pathogenesis of articular cartilage injuries and the current clinical strategies for the treatment of articular cartilage injuries. We then focus on the application of ES in the repair of articular cartilage in vivo. The ES-induced chondrogenic differentiation of mesenchymal stem cells (MSCs) and its potential regulatory mechanism are discussed in detail. In addition, we discuss the potential of applying piezoelectric materials in the process of constructing engineering articular cartilage, highlighting the important advances in the unique field of tissue engineering

    Design, Synthesis and Antiviral Activity Studies of Schizonepetin Derivatives

    Get PDF
    A series of schizonepetin derivatives have been designed and synthesized in order to obtain potent antivirus agents. The antiviral activity against HSV-1 and influenza virus H3N2 as well as the cytotoxicity of these derivatives was evaluated by using cytopathic effect (CPE) inhibition assay in vitro. Compounds M2, M4, M5 and M34 showed higher inhibitory activity against HSV-1 virus with the TC50 values being in micromole. Compounds M28, M33, and M35 showed higher inhibitory activity against influenza virus H3N2 with their TC50 values being 96.4, 71.0 and 75.4 μM, respectively. Preliminary biological activity evaluation indicated that the anti-H3N2 and anti-HSV-1 activities improved obviously through the introduction of halogen into the structure of schizonepetin

    Copper-induced injectable hydrogel with nitric oxide for enhanced immunotherapy by amplifying immunogenic cell death and regulating cancer associated fibroblasts

    No full text
    Background Immunogenic cell death (ICD) induced by different cancer treatments has been widely evaluated to recruit immune cells and trigger the specific antitumor immunity. However, cancer associated fibroblasts (CAFs) can hinder the invasion of immune cells and polarize the recruited monocytes to M2-type macrophages, which greatly restrict the efficacy of immunotherapy (IT). Methods In this study, an injectable hydrogel induced by copper (Cu) has been designed to contain antibody of PD-L1 and nitric oxide (NO) donor. The therapeutic efficacy of hydrogel was studied in 4T1 cells and CAFs in vitro and 4T1 tumor-bearing mice in vivo. The immune effects on cytotoxic T lymphocytes, dendritic cells (DCs) and macrophages were analyzed by flow cytometry. Enzyme-linked immunosorbent assay, immunofluorescence and transcriptome analyses were also performed to evaluate the underlying mechanism. Results Due to the absorbance of Cu with the near-infrared laser irradiation, the injectable hydrogel exhibits persistent photothermal effect to kill cancer cells. In addition, the Cu of hydrogel shows the Fenton-like reaction to produce reactive oxygen species as chemodynamic therapy, thereby enhancing cancer treatment and amplifying ICD. More interestingly, we have found that the released NO can significantly increase depletion of CAFs and reduce the proportion of M2-type macrophages in vitro. Furthermore, due to the amplify of ICD, injectable hydrogel can effectively increase the infiltration of immune cells and reverse the immunosuppressive tumor microenvironment (TME) by regulating CAFs to enhance the therapeutic efficacy of anti-PD-L1 in vivo. Conclusions The ion induced self-assembled hydrogel with NO could enhance immunotherapy via amplifying ICD and regulating CAFs. It provides a novel strategy to provoke a robust antitumor immune response for clinical cancer immunotherapy. Graphical Abstrac
    corecore