39 research outputs found

    Frequency Division Control of Line-of-Sight Tracking for Space Gravitational Wave Detector

    No full text
    The space gravitational wave detector uses the inter-satellite laser interferometer to measure a change in distance with ultra-high precision at the picometer level. Its special differential wavefront sensing technology based on laser interference is used to obtain the ultra-high-precision relative attitude between spacecrafts. In order to acquire the measurement, it is necessary to maintain high-precision attitude pointing and alignment for the optical path line-of-sight of the detector. This paper proposes a frequency division control method. More specifically, we chose the telescope attitude control loop frequency division as it is the faster response part, mainly relative to the high-frequency band within the measurement bandwidth. The spacecraft attitude frequency division is mainly in the low-frequency band within the measurement bandwidth. Finally, a high-precision simulation analysis is carried out. The results show that compared with traditional methods, the use of frequency division control design can significantly improve the attitude and pointing stability of the system and provide control support for systems requiring high pointing coordination accuracy, such as space gravity wave detectors

    Relative attitude stability analysis of double satellite formation for gravity field exploration in space debris environment

    No full text
    Abstract Spacecraft operating in low orbit are at risk of being hit by space debris. In the debris environment, the impact of debris is likely to cause the double satellite formation to exit science mode or even lead to the divergence of the control system, thus affecting the scientific exploration mission. In this paper, the attitude stability of the double satellite formation for gravity field in the near circular and polar orbit in the space debris environment is studied. Firstly, based on Lyapunov control and LQR, two sets of control models of stochastic collision for two satellites aligned with each other were proposed, and the actuators were modelled and assigned. Secondly, models of collision probability and momentum are developed. The distribution law of space debris is obtained according to the international common debris software. Meanwhile, probability density function of two independent collisions is gained. Finally, through Monte Carlo simulation and statistics, the changes of relative attitude and thrust torque are simulated when the satellite obtains the angular momentum for a short period of time due to being impacted by space debris. During the 10-year mission period, the number of times that the space debris impact makes the satellite attitude out of the science mode and the number of times that the control system diverges are obtained, which provides a reference for the normal manner of the double satellite formation for gravity field exploration

    Multi-modes control method for spacecraft formation establishment and reconfiguration near the libration points

    Get PDF
    AbstractThis paper studies Multi-modes control method for libration points formation establishment and reconfiguration. Firstly, relations between optimal impulse control and Floquet modes are investigated. Method of generating modes is proposed. Characteristics of the mode coefficients stimulated at different time are also given. Studies show that coefficients of controlled modes can be classified into four types, and formation establishment and reconfiguration can be achieved by multi-impulse control with the presented method of generating modes. Then, since libration points formation is generally unstable, mutli-modes keeping control method which can stabilize five Floquet modes simultaneously is proposed. Finally, simulation on formation establishment and reconfiguration are carried out by using method of generating modes and mutli-modes keeping control method. Results show that the proposed control method is effective and practical

    Distributed adaptive time-varying formation tracking for linear multi-agent systems: A dynamic output approach

    No full text
    International audienc

    Maneuver Guidance and Formation Maintenance for Control of Leaderless Space-Robot Teams

    No full text

    Satellite Swarm Reconfiguration Planning Based on Surrogate Models

    No full text

    Adaptive Active Positioning of Camellia oleifera Fruit Picking Points: Classical Image Processing and YOLOv7 Fusion Algorithm

    No full text
    Camellia oleifera fruits are randomly distributed in an orchard, and the fruits are easily blocked or covered by leaves. In addition, the colors of leaves and fruits are alike, and flowers and fruits grow at the same time, presenting many ambiguities. The large shock force will cause flowers to fall and affect the yield. As a result, accurate positioning becomes a difficult problem for robot picking. Therefore, studying target recognition and localization of Camellia oleifera fruits in complex environments has many difficulties. In this paper, a fusion method of deep learning based on visual perception and image processing is proposed to adaptively and actively locate fruit recognition and picking points for Camellia oleifera fruits. First, to adapt to the target classification and recognition of complex scenes in the field, the parameters of the You Only Live Once v7 (YOLOv7) model were optimized and selected to achieve Camellia oleifera fruits’ detection and determine the center point of the fruit recognition frame. Then, image processing and a geometric algorithm are used to process the image, segment, and determine the morphology of the fruit, extract the centroid of the outline of Camellia oleifera fruit, and then analyze the position deviation of its centroid point and the center point in the YOLO recognition frame. The frontlighting, backlight, partial occlusion, and other test conditions for the perceptual recognition processing were validated with several experiments. The results demonstrate that the precision of YOLOv7 is close to that of YOLOv5s, and the mean average precision of YOLOv7 is higher than that of YOLOv5s. For some occluded Camellia oleifera fruits, the YOLOv7 algorithm is better than the YOLOv5s algorithm, which improves the detection accuracy of Camellia oleifera fruits. The contour of Camellia oleifera fruits can be extracted entirely via image processing. The average position deviation between the centroid point of the image extraction and the center point of the YOLO recognition frame is 2.86 pixels; thus, the center point of the YOLO recognition frame is approximately considered to be consistent with the centroid point of the image extraction
    corecore