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Abstract This paper studies Multi-modes control method for libration points formation establish-
ment and reconfiguration. Firstly, relations between optimal impulse control and Floquet modes
are investigated. Method of generating modes is proposed. Characteristics of the mode coefficients
stimulated at different time are also given. Studies show that coefficients of controlled modes can
be classified into four types, and formation establishment and reconfiguration can be achieved
by multi-impulse control with the presented method of generating modes. Then, since libration
points formation is generally unstable, mutli-modes keeping control method which can stabilize
five Floquet modes simultaneously is proposed. Finally, simulation on formation establishment and
reconfiguration are carried out by using method of generating modes and mutli-modes keeping control
method. Results show that the proposed control method is effective and practical. c© 2012 The
Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1201301]
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Libration point orbits (LPOs), a subset of peri-
odic orbits in circular restricted three-body problem
(CRTBP),1 have enjoyed a growing prominence in mis-
sion design. Over the last 30 years, several more mis-
sions have flown on these three-body trajectories, and
many are still in orbit collecting data, including ACE,
SOHO, WMAP, ARTEMIS.2,3 At present, interest in
LPOs continues to increase and mainly focuses on the
relative motion problem of LPOs, such as deployment
of spacecraft formation in LPOs to achieve long base-
line interferometry,4 and research on rendezvous and
docking between the satellites and the space stations in
LPOs.5

Compared with two-body problem, the relative mo-
tion problem of the LPOs is more complicated due to
its nonlinear characteristic. Extensive progress in the
relative motion problem of LPOs has been achieved.
Richardson obtained the third-order expansions of the
nonlinear relative motion.6 Howell and Barden inves-
tigated formation flying in the vicinity of the libra-
tion points in the circular restricted three-body prob-
lem. Initially, their focus was the determination of the
natural behavior on the center manifold near the li-
bration points.7 In a later work, the control strategies
were shown to be effective in the full ephemeris model,
include input-state feedback linearization and output-
state feedback linearization, linear quadratic regulator
theory, and impulsive maneuvers derived via a differ-
ential corrections scheme.8,9 Gurfil et al. studied the
invariant manifolds of relative motion and provided
a measurement method.10 Gong et al. studied two-
impulse maneuver method for formation in LPOs, the
beginning-ending method was proven to be an energy-
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optimal one of all two-impulse reconfigurations.11,12

Peng et al.13 proposed an optimal periodic controller
for spacecraft formation in LPOs. A new numerical
algorithm for solving the periodic Riccati differential
equation is proposed based on the geometric structure
of Hamiltonian system.13 Characteristic exponent as-
signment method and adaptive neural control method
was also studied for stabilizing the relative motion of
LPOs.14,15

Gómez et al. proposed the Floquet modes of LPOs
and the method of calculation.16,17 With the Floquet
modes, relative motion state of the LPOs can be ex-
pressed as a linear combination of six Floquet modes,
which are the divergence mode, the convergence mode,
and four periodic modes. Consequently, there is an in-
ner link between the Floquet periodic modes and the
relative motion of LPOs. Station-keeping control meth-
ods for LPOs based on Floquet theory have been also
studied by Gómez et al.,16 Simó et al.18 and Howell et
al.19 Lü et al.20 proposed a continuous thrust control
strategy to eradicate the dominant unstable component
of LPOs. Using transformed coordinate system the lin-
ear part of dynamical equations can be expressed in a
standard form. The advantage of proposed method is
of no need to determine a nominal orbit as a reference
path.20

In former work, we have shown that configuration of
libration points spacecraft formation can be designed by
using four periodic Floquet modes, and several special
formation configurations have been obtained.21

In this paper, problem of libration points formation
establishment and reconfiguration is studied. Firstly,
dynamic model of the circular restricted three body
problem is introduced. Secondly, the modes generat-
ing method using optimal Floquet control strategy is
investigated. Then, muti-modes control method which
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can stabilize five Floquet modes simultaneously is pro-
posed. Finally, simulation on formation establishment
and reconfiguration is carried out.

Given two point masses m1 and m2, the circular re-
stricted three body problem (CRTBP) studies the mo-
tion of a third point mass m3, whose dynamics is af-
fected by, but does not affect, m1 and m2, which are
called the primaries. The primaries move along a circu-
lar orbit. After normalization in the synodic reference
frame, the equations of motion for m3 in the CRTBP
are of the form8

ẍ− 2ẏ =
∂Ω

∂x
,

ÿ + 2ẋ =
∂Ω

∂y
,

z̈ =
∂Ω

∂z
,

(1)

with

Ω (x, y, μ) =
1

2
(x2 + y2) +

1− μ

r1
+

μ

r2
+

μ (1− μ)

2
,

where

μ = m1/ (m1 +m2) ,

r1 and r2 denote the distances of m1 and m2 from the
center of mass of the system

r1 =
[
(x+ μ)2 + y2 + z2

]1/2
,

r2 =
[
(x+ μ− 1)2 + y2 + z2

]1/2
.

Let X̃ represent a reference LPOs, then δX = X − X̃
represents the variation with respect to it. The linear
variational equation of motion in the CRTBP can be
derived in matrix form as

δẊ = A(t) · δX. (2)

A(t) is periodic and time-varying, which has the form

A(t) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Ωxx Ωxy Ωxz 0 2 0
Ωyx Ωyy Ωyz −2 0 0
Ωzx Ωzy Ωzz 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ . (3)

Formation establishment and reconfiguration can be
achieved via two stages. First stage is the modes gener-
ation. Modes combination of desired configuration will
be generated based on optimal Floquet control strategy.
Second stage is to keep the newly formed configuration.
Five Floquet modes will be stabilized simultaneously at
this stage.

Gómez et al.16 proposed the optimal impulse con-
trol strategy for eliminating mode 4 in the study of the
transfer between Halo orbits

e4(τ) +

(
03×1

Δv3×1

)
= α2e2(τ) + α3e3(τ) +

Fig. 1. The modes coefficients stimulated by impulse control
form Eq. (4).

α4e4(τ) + α5e5(τ) + α6e6(τ), (4)

with Eq. (4), mode e4 can be expressed by other modes
(mode 2, 3, 5, 6). There are seven unknown variables
(Δv3×1, α2, α3, α5, α6) in six-dimensional equations,
so adding some optimal condition such as |Δv3×1| to be
a minimum, we can compute the value of Δv3×1.

Similarly, we get the optimal impulse control strat-
egy for eliminating other modes. The equations are

e6(τ) +

(
03×1

Δv3×1

)
= α2e2(τ) + α3e3(τ) +

α4e4(τ) + α5e5(τ), (5)

e3(τ) +

(
03×1

Δv3×1

)
= α2e2(τ) + α4e4(τ) +

α5e5(τ) + α6e6(τ), (6)

e5(τ) +

(
03×1

Δv3×1

)
= α2e2(τ) + α3e3(τ) +

α4e4(τ) + α6e6(τ). (7)

To make a forward study on the relations between
the optimal impulse control and Floquet modes, follow-
ing simulations are carried out. Parameters of three
specific Halo orbits are listed in Table 1, where X̃0 and
T represent initial values and periods of reference Halo
orbits in normalized units, respectively.

Supposing that the initial states of the surround-
ing spacecraft is the same as the reference spacecraft,
we impose four kinds of optimal Floquet control strate-
gies. The periodic modes coefficients curves are shown
in Figs. 1–4. Each mode is represented by different
symbolic and three curves correspond to three reference
Halo orbits.

From Figs. 1–4, the following conclusions can be
summarized:

(1) The optimal control strategy can produce a sta-
ble mode and will also cause changes of other three
modes.
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Table 1. The parameters of three reference Halo orbits

X̃ =
[
x y z ẋ ẏ ż

]
T

Orbit 1 [0.823 368 92 0 0.004 072 73 0 0.126 614 79 0] 2.743 072 12

Orbit 2 [0.823 363 25 0 0.010 408 08 0 0.128 124 16 0] 2.743 699 52

Orbit 3 [0.823 365 17 0 0.022 400 00 0 0.134 278 08 0] 2.746 337 69

Fig. 2. The modes coefficients stimulated by impulse control
form Eq. (5).

Fig. 3. The modes coefficients stimulated by impulse control
form Eq. (6).

(2) The coefficients of controlled modes are classified
into four types:

(a) “Constant type”, which corresponds to the
curve of α3 in Fig. 1.

(b) “Bimodal type with the zero start and zero
end”, which corresponds to curve of α4 in Fig. 1.

(c) “Bimodal type with the non-zero start and
non-zero end”, which corresponds to curve of α5 in
Fig. 1.

(d) “Bimodal and double valley type”, which cor-
responds to curve of α6 in Fig. 1.

Other modal types stimulated by optimal impulse
control are listed in Table 2.

(3) With the decrease of z-amplitude of Halo or-

Fig. 4. The modes coefficients stimulated by impulse control
form Eq. (7).

Fig. 5. The curve of impulse control energy along with time
instant.

bit, the peak values of mode coefficient curves become
sharp. To the opposite, if the z-amplitude of Halo orbit
increases, the peak values of mode coefficient curves will
become smooth.

(4) The optimal impulse control will always gener-
ate modes e3, e5 (or e4, e6) in pairs. If the optimal im-
pulse is applied near the peak of the “Non-zero bimodal
type ”, the modes e3, e5 (or e4, e6) will be generated
with opposite signs.

Further studies show that modes imposed by the
impulse control are different but the trends are almost
the same for four kind of modes within T . As shown
in Fig. 5, the minimum control energies are at t = 0 T
and t = 0.5 T while the maximum control energies cost
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Table 2. Modal types stimulated by optimal impulse control.

Controlled modes Constant type Zero bimodal type Non-zero bimodal type Bimodal and double valley type

Fig. 1 e3 e3 e4 e5 e6

Fig. 2 e4 e4 e3 e6 e5

Fig. 3 e5 e5 e6 e3 e4

Fig. 4 e6 e6 e5 e4 e3

are at t = 0.3 T and t = 0.7 T . So the appropriate
control time can be selected in the vicinity of 0.3 T and
0.7 T . These results indicate that proper time of control
operation should be considered.

Howell et al.19 proposed two types of strategies for
controlling three Floquet modes simultaneously, how-
ever, it is not fit for formation establishment and recon-
figuration because five Floquet modes should be con-
trolled simultaneously. In the problem of formation es-
tablishment and reconfiguration, unstable mode δX1,
needs to be totally or substantially eliminated. The
stable mode 2 needs not to be controlled. Four peri-
odic modes should be stably controlled at the designed
value. That is to say, except the stable mode, five Flo-
quet modes must be controlled simultaneously.

The initial state deviation can be expressed as

ΔδXc = δX1 (t) + ΔδX3 (t) + ΔδX4 (t) +

ΔδX5 (t) + ΔδX6 (t) (8)

where

ΔδXj (t) = δXj (t)− δX̃j (t) =

[cj(t)− c̃j(t)] ej (t) , j = 3, 4, 5, 6.

Studies show that it is impossible to eliminate all
of δXc in one impulse,4 thus to make the state devia-
tion converge continuously, the gradual control manner
should be adopted

ΔδXc +

[
03×1

ΔV3×1

]
= α3 · e3 (t) + α4 · e4 (t) +

α5 · e5 (t) + α6 · e6 (t) + α2 · e2 (t) , (9)

where the expression of∣∣∣∣ αj

cj(t) − c̃j(t)

∣∣∣∣ < 1 , j = 3, 4, 5, 6

should be satisfied to diminish the control error.
After each control, the unstable item will be elimi-

nated and the deviation of coefficients of periodic modes
3–6 will be smaller and smaller which ensures the sta-
bility of the designed configuration.

The equation can be transformed into

ΔδXc − α2 · e2 (t) =[
e3 (t) e4 (t) e5 (t) e6 (t)

03×1

−I3×3

]
·

[
α3,4,5,6

ΔV3×1

]
. (10)

Equation (10) is ill-posed and of rank deficiency,
which transforms one periodic mode from the right side
to the left. Take the mode 3 as an example

ΔδXc − α2 · e2 (t)− α3 · e3 (t) =[
e4 (t) e5 (t) e6 (t)

03×1

−I3×3

] [
α4,5,6

ΔV3×1

]
,

(11)

The right side of Eq. (11) is full rank and can

be solved. Let H =

[
e4 (t) e5 (t) e6 (t)

03×1

−I3×3

]
,

Eq. (11) leads to[
α4,5,6

ΔV3×1

]
= H−1[ΔδXc − α2 · e2 (t)−

α3 · e3 (t)]. (12)

Since

[
ᾱ4,5,6

ΔV3×1

]
is determined by α2, α3 in

Eq. (12), further optimization can be done.
Define

A = H−1 · δXc, B = H−1 · e2 (t)

C = H−1 · e3 (t) , Z =

[
α4,5,6

ΔV3×1

]

in Eq. (12),

Z = A− α2 ·B − α3 ·C. (13)

To minimize ‖Z‖2, there would be

α2,opt =
ATB

BTB
− α3,opt

CTB

BTB
,

α3,opt =

(
A− ATB

BTB
B

)T

·
(
C − CTB

BTB
B

)T

(
C − CTB

BTB
B

)T

·
(
C − CTB

BTB
B

) . (14)

If minimize ‖Z(1 : 3)‖2, we can calculate α2,opt, α3,opt

only by the first three-dimensional matrix of B,C.
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Fig. 6. Formation reconfiguration process.

There is no constraint on α3 · e3 (t) and α3 may in-
crease during formation control. It means that although
the control error of the modes α4,5,6 converge, the er-
ror of the mode 3 may increase. The algorithm can be
improved as follows:

(1) Adding a criterion. That is when |α3,opt| > 1,
let α3,opt = 1. Since the condition of |α3,opt| < 1 will
certainly happen and the error of mode 3 will undoubt-
edly converge.

(2) Average two corresponding Floquet modes. For
example, using

Z = A− α2 ·B − α3 ·C,

Z = A− α2 ·B − α5 ·C,

or

Z = A− α2 ·B − α4 ·C,

Z = A− α2 ·B − α6 ·C,

we can improve the control accuracy.
(3) Average four corresponding Floquet modes. In

this way, the control accuracy can be improved further.
Formation reconfiguration process is designed as

changing the coefficient from (α3 = 0.001, α5 = −0.001)
to (α4 = 0.001, α6 = −0.001). At t = 0.72 T , modes
combination of α3 = 0.001 and α5 = −0.001 is gener-
ated by establishment control. At t = 1.785 T , impulse
control is imposed to eliminate the mode 3 and mode 5.
And modes combination of α4 = 0.001 and α6 = −0.001
is generated at the same time. At last, the maintenance
control for mode 4 and mode 6 is carried out. The
whole process is shown in Fig. 6, including formation
establishment, formation reconfiguration and formation
maintenance. Every stage is achieved with high accu-
racy.

Modes change during formation reconfiguration is
shown in Fig. 7. During the process of modes transfor-
mation, large stable manifold was created and then de-
creased exponentially. The mutations of fuel consump-
tions occur when the impulse control is applied in Fig. 8.
Within five orbital period’s time about 60 d, hundreds

Fig. 7. Modes change during formation reconfiguration.

Fig. 8. Fuel consumptions during formation reconfiguration.

of kilometers of large configuration have been generated
and formation reconfiguration have been done with fuel
consumption of about 9 m/s. The control frequency is
approximately once per day. Values of each impulse is
small, so it can be implemented by small thruster or
electric thruster.

Deep research on the relations between Floquet
modes and impulse control has been done. The modes
generating method is studied by using optimal Floquet
control strategy. The control method which can stabi-
lize five Floquet modes simultaneously is proposed for
formation establishment and reconfiguration. The ef-
fectiveness and practicability of the proposed control
strategy are testified by simulation.
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43, 493 (1998).
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