2,777 research outputs found

    Learning an Explicit Hyperparameter Prediction Policy Conditioned on Tasks

    Full text link
    Meta learning has attracted much attention recently in machine learning community. Contrary to conventional machine learning aiming to learn inherent prediction rules to predict labels for new query data, meta learning aims to learn the learning methodology for machine learning from observed tasks, so as to generalize to new query tasks by leveraging the meta-learned learning methodology. In this study, we interpret such learning methodology as learning an explicit hyperparameter prediction policy shared by all training tasks. Specifically, this policy is represented as a parameterized function called meta-learner, mapping from a training/test task to its suitable hyperparameter setting, extracted from a pre-specified function set called meta learning machine. Such setting guarantees that the meta-learned learning methodology is able to flexibly fit diverse query tasks, instead of only obtaining fixed hyperparameters by many current meta learning methods, with less adaptability to query task's variations. Such understanding of meta learning also makes it easily succeed from traditional learning theory for analyzing its generalization bounds with general losses/tasks/models. The theory naturally leads to some feasible controlling strategies for ameliorating the quality of the extracted meta-learner, verified to be able to finely ameliorate its generalization capability in some typical meta learning applications, including few-shot regression, few-shot classification and domain generalization.Comment: 59 pages. arXiv admin note: text overlap with arXiv:1904.03758 by other author

    Stopping power and energy loss for protons in Be plasmas

    Get PDF
    Stopping power (SP) for ions in plasmas is a basic and old problem, which data is important for heavy ion driven inertial fusion and heavy ion transport in hot matters. So far there are some relevant experiments and many theoretical researches..

    On Efficient Range-Summability of IID Random Variables in Two or Higher Dimensions

    Get PDF
    d-dimensional (for d > 1) efficient range-summability (dD-ERS) of random variables (RVs) is a fundamental algorithmic problem that has applications to two important families of database problems, namely, fast approximate wavelet tracking (FAWT) on data streams and approximately answering range-sum queries over a data cube. Whether there are efficient solutions to the dD-ERS problem, or to the latter database problem, have been two long-standing open problems. Both are solved in this work. Specifically, we propose a novel solution framework to dD-ERS on RVs that have Gaussian or Poisson distribution. Our dD-ERS solutions are the first ones that have polylogarithmic time complexities. Furthermore, we develop a novel k-wise independence theory that allows our dD-ERS solutions to have both high computational efficiencies and strong provable independence guarantees. Finally, we show that under a sufficient and likely necessary condition, certain existing solutions for 1D-ERS can be generalized to higher dimensions
    corecore