50 research outputs found

    Cloud-based data management system for automatic real-time data acquisition from large-scale laying-hen farms

    Get PDF
    : Management of poultry farms in China mostly relies on manual labor. Since such a large amount of valuable data for the production process either are saved incomplete or saved only as paper documents, making it very difficult for data retrieve, processing and analysis. An integrated cloud-based data management system (CDMS) was proposed in this study, in which the asynchronous data transmission, distributed file system, and wireless network technology were used for information collection, management and sharing in large-scale egg production. The cloud-based platform can provide information technology infrastructures for different farms. The CDMS can also allocate the computing resources and storage space based on demand. A real-time data acquisition software was developed, which allowed farm management staff to submit reports through website or smartphone, enabled digitization of production data. The use of asynchronous transfer in the system can avoid potential data loss during the transmission between farms and the remote cloud data center. All the valid historical data of poultry farms can be stored to the remote cloud data center, and then eliminates the need for large server clusters on the farms. Users with proper identification can access the online data portal of the system through a browser or an APP from anywhere worldwide

    Exploring potential genes and mechanisms linking erectile dysfunction and depression

    Get PDF
    BackgroundThe clinical correlation between erectile dysfunction (ED) and depression has been revealed in cumulative studies. However, the evidence of shared mechanisms between them was insufficient. This study aimed to explore common transcriptomic alterations associated with ED and depression.Materials and methodsThe gene sets associated with ED and depression were collected from the Gene Expression Omnibus (GEO) database. Comparative analysis was conducted to obtain common genes. Using R software and other appropriate tools, we conducted a range of analyses, including function enrichment, interactive network creation, gene cluster analysis, and transcriptional and post-transcriptional signature profiling. Candidate hub crosslinks between ED and depression were selected after external validation and molecular experiments. Furthermore, subpopulation location and disease association of hub genes were explored.ResultsA total of 85 common genes were identified between ED and depression. These genes strongly correlate with cell adhesion, redox homeostasis, reactive oxygen species metabolic process, and neuronal cell body. An interactive network consisting of 80 proteins and 216 interactions was thereby developed. Analysis of the proteomic signature of common genes highlighted eight major shared genes: CLDN5, COL7A1, LDHA, MAP2K2, RETSAT, SEMA3A, TAGLN, and TBC1D1. These genes were involved in blood vessel morphogenesis and muscle cell activity. A subsequent transcription factor (TF)–miRNA network showed 47 TFs and 88 miRNAs relevant to shared genes. Finally, CLDN5 and TBC1D1 were well-validated and identified as the hub crosslinks between ED and depression. These genes had specific subpopulation locations in the corpus cavernosum and brain tissue, respectively.ConclusionOur study is the first to investigate common transcriptomic alterations and the shared biological roles of ED and depression. The findings of this study provide insights into the referential molecular mechanisms underlying the co-existence between depression and ED

    Activation of aldehyde dehydrogenase-2 improves ischemic random skin flap survival in rats

    Get PDF
    ObjectiveRandom skin flaps have many applications in plastic and reconstructive surgeries. However, distal flap necrosis restricts wider clinical utility. Mitophagy, a vital form of autophagy for damaged mitochondria, is excessively activated in flap ischemia/reperfusion (I/R) injury, thus inducing cell death. Aldehyde dehydrogenase-2 (ALDH2), an allosteric tetrameric enzyme, plays an important role in regulating mitophagy. We explored whether ALDH2 activated by N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide (Alda-1) could reduce the risk of ischemic random skin flap necrosis, and the possible mechanism of action.MethodsModified McFarlane flap models were established in 36 male Sprague-Dawley rats assigned randomly to three groups: a low-dose Alda-1 group (10 mg/kg/day), a high-dose Alda-1 group (20 mg/kg/day) and a control group. The percentage surviving skin flap area, neutrophil density and microvessel density (MVD) were evaluated on day 7. Oxidative stress was quantitated by measuring the superoxide dismutase (SOD) and malondialdehyde (MDA) levels. Blood perfusion and skin flap angiogenesis were assessed via laser Doppler flow imaging and lead oxide-gelatin angiography, respectively. The expression levels of inflammatory cytokines (IL-1β, IL-6, and TNF-α), vascular endothelial growth factor (VEGF), ALDH2, PTEN-induced kinase 1 (PINK1), and E3 ubiquitin ligase (Parkin) were immunohistochemically detected. Indicators of mitophagy such as Beclin-1, p62, and microtubule-associated protein light chain 3 (LC3) were evaluated by immunofluorescence.ResultsAlda-1 significantly enhanced the survival area of random skin flaps. The SOD activity increased and the MDA level decreased, suggesting that Alda-1 reduced oxidative stress. ALDH2 was upregulated, and mitophagy-related proteins (PINK1, Parkin, Beclin-1, p62, and LC3) were downregulated, indicating that ALDH2 inhibited mitophagy through the PINK1/Parkin signaling pathway. Treatment with Alda-1 reduced neutrophil infiltration and expressions of inflammatory cytokines. Alda-1 significantly upregulated VEGF expression, increased the MVD, promoted angiogenesis, and enhanced blood perfusion.ConclusionALDH2 activation can effectively enhance random skin flap viability via inhibiting PINK1/Parkin-dependent mitophagy. Moreover, enhancement of ALDH2 activity also exerts anti-inflammatory and angiogenic properties

    Application of a Modified Low-Field NMR Method on Methane Adsorption of Medium-Rank Coals

    No full text
    Methane adsorption capacity is an important parameter for coalbed methane (CBM) exploitation and development. Traditional examination methods are mostly time-consuming and could not detect the dynamic processes of adsorption. In this study, a modified low-field nuclear magnetic resonance (NMR) method that compensates for these shortcomings was used to quantitatively examine the methane adsorption capacity of seven medium-rank coals. Based on the typical T2 amplitudes obtained from low-field NMR measurement, the volume of adsorbed methane was calculated. The results indicate that the Langmuir volume of seven samples is in a range of 18.9–31.85 m3/t which increases as the coal rank increases. The pore size in range 1-10 nm is the main contributor for gas adsorption in these medium-rank coal samples. Comparing the adsorption isotherms of these coal samples from the modified low-field NMR method and volumetric method, the absolute deviations between these two methods are less than 1.03 m3/t while the relative deviations fall within 4.76%. The absolute deviations and relative deviations decrease as vitrinite reflectance (Ro) increases from 1.08% to 1.80%. These results show that the modified low-field NMR method is credible to measure the methane adsorption capacity and the precision of this method may be influenced by coal rank

    Changes of Key Soil Factors, Biochemistry and Bacterial Species Composition during Seasons in the Rhizosphere and Roots of <i>Codonopsis pilosula</i> (tangshen)

    No full text
    Codonopsis pilosula is a medicinal and edible herb with a rich nutritional value. In Gansu Province, China, its production quality and yield differ during the four seasons. Here, we investigated the differences in the microfloral composition and metabolic functions in the rhizospheric soil and roots of C. pilosula during the four seasons, and we also analyzed their dynamic and synergistic effects on C. pilosula growth and carbohydrate content change. The C. pilosula samples were analyzed for plant physiology, microfloral composition and metabolic functions in the rhizospheric soil and roots using high-throughput sequencing technology. Environmental indices including soil physiochemistry and meteorological conditions were also determined by the coupled chromatography–spectroscopy technique. The results revealed that the C. pilosula growth was affected by temperature, precipitation and light intensity, with the bacterial structures and functions of the soil and root samples showing obvious seasonal changes. Due to the diversity of microbial composition and community metabolic function, and the synergistic effect of microbial and environmental factors, there are significant differences in stress resistance, physiological status and metabolites of C. pilosula in different seasons. Furthermore, the change in seasons was significantly correlated with the quality and yield of C. pilosula. This study provides a scientific basis for soil improvement and the refinement of local Radix C. pilosula cultivation methods

    ECG-Based Heartbeat Classification Using Two-Level Convolutional Neural Network and RR Interval Difference

    No full text

    Green Preparation of Fluorescent Carbon Quantum Dots from Cyanobacteria for Biological Imaging

    No full text
    Biomass-based carbon quantum dots (CQDs) have become a significant carbon materials by their virtues of being cost-effective, easy to fabricate and low in environmental impact. However, there are few reports regarding using cyanobacteria as a carbon source for the synthesis of fluorescent CQDs. In this study, the low-cost biomass of cyanobacteria was used as the sole carbon source to synthesize water-soluble CQDs by a simple hydrothermal method. The synthesized CQDs were mono-dispersed with an average diameter of 2.48 nm and exhibited excitation-dependent emission performance with a quantum yield of 9.24%. Furthermore, the cyanobacteria-derived CQDs had almost no photobleaching under long-time UV irradiation, and exhibited high photostability in the solutions with a wide range of pH and salinity. Since no chemical reagent was involved in the synthesis of CQDs, the as-prepared CQDs were confirmed to have low cytotoxicity for PC12 cells even at a high concentration. Additionally, the CQDs could be efficiently taken up by cells to illuminate the whole cell and create a clear distinction between cytoplasm and nucleus. The combined advantages of green synthesis, cost-effectiveness and low cytotoxicity make synthesized CQDs a significant carbon source and broaden the application of cyanobacteria and provide an economical route to fabricate CQDs on a large scale

    Cloud-based data management system for automatic real-time data acquisition from large-scale laying-hen farms

    No full text
    : Management of poultry farms in China mostly relies on manual labor. Since such a large amount of valuable data for the production process either are saved incomplete or saved only as paper documents, making it very difficult for data retrieve, processing and analysis. An integrated cloud-based data management system (CDMS) was proposed in this study, in which the asynchronous data transmission, distributed file system, and wireless network technology were used for information collection, management and sharing in large-scale egg production. The cloud-based platform can provide information technology infrastructures for different farms. The CDMS can also allocate the computing resources and storage space based on demand. A real-time data acquisition software was developed, which allowed farm management staff to submit reports through website or smartphone, enabled digitization of production data. The use of asynchronous transfer in the system can avoid potential data loss during the transmission between farms and the remote cloud data center. All the valid historical data of poultry farms can be stored to the remote cloud data center, and then eliminates the need for large server clusters on the farms. Users with proper identification can access the online data portal of the system through a browser or an APP from anywhere worldwide.This article is from International Journal of Agricultural and Biological Engineering 9 (2016): 106-115, doi:10.3965/j.ijabe.20160904.2488. Posted with permission.</p

    TRPV4 channel inhibits TGF-β1-induced proliferation of hepatic stellate cells.

    No full text
    TRPV4, one of the TRP channels, is implicated in diverse physiological and pathological processes including cell proliferation. However, the role of TRPV4 in liver fibrosis is largely unknown. Here, we characterized the role of TRPV4 in regulating HSC-T6 cell proliferation. TRPV4 mRNA and protein were measured by RT-PCR and Western blot in patients and rat model of liver fibrosis in vivo and TGF-β1-activated HSC-T6 cells in vitro. Both mRNA and protein of TRPV4 were dramatically increased in liver fibrotic tissues of both patients and CCl4-treated rats. Stimulation of HSC-T6 cells with TGF-β1 resulted in increase of TRPV4 mRNA and protein. However, TGF-β1-induced HSC-T6 cell proliferation was inhibited by Ruthenium Red (Ru) or synthetic siRNA targeting TRPV4, and this was accompanied by downregulation of myofibroblast markers including α-SMA and Col1α1. Moreover, our study revealed that miR-203 was downregulated in liver fibrotic tissues and TGF-β1-treated HSC-T6 cell. Bioinformatics analyses predict that TRPV4 is the potential target of miR-203. In addition, overexpression of miR-203 in TGF-β1-induced HSC significantly reduced TRPV4 expression, indicating TRPV4, which was regulated by miR-203, may function as a novel regulator to modulate TGF-β1-induced HSC-T6 proliferation

    Motor Oil Classification Based on Time-Resolved Fluorescence

    No full text
    <div><p>A time-resolved fluorescence (TRF) technique is presented for classifying motor oils. The system is constructed with a third harmonic Nd:YAG laser, a spectrometer, and an intensified charge coupled device (ICCD) camera. Steady-state and time-resolved fluorescence (TRF) measurements are reported for several motor oils. It is found that steady-state fluorescence is insufficient to distinguish the motor oil samples. Then contour diagrams of TRF intensities (CDTRFIs) are acquired to serve as unique fingerprints to identify motor oils by using the distinct TRF of motor oils. CDTRFIs are preferable to steady-state fluorescence spectra for classifying different motor oils, making CDTRFIs a particularly choice for the development of fluorescence-based methods for the discrimination and characterization of motor oils. The two-dimensional fluorescence contour diagrams contain more information, not only the changing shapes of the LIF spectra but also the relative intensity. The results indicate that motor oils can be differentiated based on the new proposed method, which provides reliable methods for analyzing and classifying motor oils.</p></div
    corecore