9 research outputs found

    Deciphering Charging Status, Absolute Quantum Efficiency, and Absorption Cross Section of MultiCarrier States in Single Colloidal Quantum Dot

    Full text link
    Upon photo- or electrical-excitation, colloidal quantum dots (QDs) are often found in multi-carrier states due to multi-photon absorption and photo-charging of the QDs. While many of these multi-carrier states are observed in single-dot spectroscopy, their properties are not well studied due to random charging/discharging, emission intensity intermittency, and uncontrolled surface defects of single QD. Here we report in-situ deciphering the charging status, and precisely assessing the absorption cross section, and determining the absolute emission quantum yield of mono-exciton and biexciton states for neutral, positively-charged, and negatively-charged single core/shell CdSe/CdS QD. We uncover very different photon statistics of the three charge states in single QD and unambiguously identify their charge sign together with the information of their photoluminescence decay dynamics. We then show their distinct photoluminescence saturation behaviors and evaluated the absolute values of absorption cross sections and quantum efficiencies of monoexcitons and biexcitons. We demonstrate that addition of an extra hole or electron in a QD changes not only its emission properties but also varies its absorption cross section

    Simulation Study of the Lunar Spectral Irradiances and the Earth-Based Moon Observation Geometry

    No full text
    As a radiant light source within the dynamic range of most spacecraft payloads, the Moon provides an excellent reference for on-orbit radiometric calibration. This research hinges on the precise simulation of lunar spectral irradiances and Earth-based Moon observation geometry. The paper leverages the Hapke model to simulate the temporal changes in lunar spectral irradiances, utilizing datasets obtained from the Lunar Reconnaissance Orbiter Camera (LROC). The research also details the transformation process from the lunar geographic coordinate system to the instantaneous projection coordinate system, thereby delineating the necessary observational geometry. The insights offered by this study have the potential to enhance future in-orbit spacecraft calibration procedures, thereby boosting the fidelity of data gathered from satellite observations

    Ideal CdSe/CdS Core/Shell Nanocrystals Enabled by Entropic Ligands and Their Core Size‑, Shell Thickness‑, and Ligand-Dependent Photoluminescence Properties

    No full text
    This work explored possibilities to obtain colloidal quantum dots (QDs) with ideal photoluminescence (PL) properties, i.e., monoexponential PL decay dynamics, unity PL quantum yield, ensemble PL spectrum identical to that at the single-dot level, single-dot PL nonblinking, and antibleaching. Using CdSe/CdS core/shell QDs as the model system, shell-epitaxy, ligand exchange, and shape conversion of the core/shell QDs were studied systematically to establish a strategy for reproducibly synthesizing QDs with the targeted properties. The key synthetic parameter during epitaxy was application of entropic ligands, i.e., mixed carboxylate ligands with different hydrocarbon chain length and/or structure. Well-controlled epitaxial shells with certain thickness (∼3–8 monolayers of the CdS shells) were found to be necessary to reach ideal photoluminescence properties, and the size of the core QDs was found to play a critical role in determining both photophysical and photochemical properties of the core/shell QDs. Effects of shape of the core QDs were unnoticeable, and shape of the core/shell QDs only affected photophysical properties quantitatively. Surface ligands, amines versus carboxylates, were important for photochemical properties (antiblinking and antibleaching) but barely affected photophysical properties as long as entropic ligands (mixed carboxylate ligands with distinguishable hydrocarbon chain lengths) were applied during epitaxy. Chemical environment (in polymer or in air), coupled with surface ligands, determined photochemical properties of the core/shell QDs with a given core size and shell thickness

    Design and Synthesis of Antiblinking and Antibleaching Quantum Dots in Multiple Colors via Wave Function Confinement

    No full text
    Single-molecular spectroscopy reveals that photoluminescence (PL) of a single quantum dot blinks, randomly switching between bright and dim/dark states under constant photoexcitation, and quantum dots photobleach readily. These facts cast great doubts on potential applications of these promising emitters. After ∼20 years of efforts, synthesis of nonblinking quantum dots is still challenging, with nonblinking quantum dots only available in red-emitting window. Here we report synthesis of nonblinking quantum dots covering most part of the visible window using a new synthetic strategy, i.e., confining the excited-state wave functions of the core/shell quantum dots within the core quantum dot and its inner shells (≤ ∼5 monolayers). For the red-emitting ones, the new synthetic strategy yields nonblinking quantum dots with small sizes (∼8 nm in diameter) and improved nonblinking properties. These new nonblinking quantum dots are found to be antibleaching. Results further imply that the PL blinking and photobleaching of quantum dots are likely related to each other

    Single-Dot Spectroscopy of Zinc-Blende CdSe/CdS Core/Shell Nanocrystals: Nonblinking and Correlation with Ensemble Measurements

    No full text
    Here we report the first series of phase-pure zinc-blende CdSe/CdS core/shell quantum dots (QDs) with reproducibly controlled shell thickness (4–16 monolayers), which are nonblinking (≥95% ‘on’ time) in single-exciton regime for the entire series. These unique QDs possess well-controlled yet simple excited-state decay dynamics at both single-dot and ensemble levels, extremely small nonblinking volume threshold, if any, and unique ‘on’ and ‘off’ probability statistics. The outstanding optical properties of the QDs at the single-dot level were found to be correlated well with their ensemble properties. These small and bright nonblinking QDs offer promising technical application prospect in both single-dot and ensemble levels. The consistent and reproducible experimental results shed new light on the mechanisms of blinking of QDs

    Single-Dot Spectroscopy of Zinc-Blende CdSe/CdS Core/Shell Nanocrystals: Nonblinking and Correlation with Ensemble Measurements

    No full text
    Here we report the first series of phase-pure zinc-blende CdSe/CdS core/shell quantum dots (QDs) with reproducibly controlled shell thickness (4–16 monolayers), which are nonblinking (≥95% ‘on’ time) in single-exciton regime for the entire series. These unique QDs possess well-controlled yet simple excited-state decay dynamics at both single-dot and ensemble levels, extremely small nonblinking volume threshold, if any, and unique ‘on’ and ‘off’ probability statistics. The outstanding optical properties of the QDs at the single-dot level were found to be correlated well with their ensemble properties. These small and bright nonblinking QDs offer promising technical application prospect in both single-dot and ensemble levels. The consistent and reproducible experimental results shed new light on the mechanisms of blinking of QDs

    Charging and Discharging Channels in Photoluminescence Intermittency of Single Colloidal CdSe/CdS Core/Shell Quantum Dot

    No full text
    Understanding photoluminescence (PL) intermittency of single quantum dots (QDs) (intensity blinking by randomly switching between distinguishable brightness states under continuous excitation) has been a long-standing fundamental challenge and potential roadblock for their applications. Here we introduce a new analysis method for single-molecule spectroscopy that treats the blinking as photochemical/chemical processes (switching between neutral/bright and charged/dim states). It uncovers the channels for charging (bright to dim) and discharging (dim to bright) involved in PL blinking of single CdSe/CdS core/shell QDs. Both charging and discharging of the single CdSe/CdS core/shell QD possess a photochemical channel (∼10<sup>–5</sup> to 10<sup>–6</sup> events/photon) that linearly depends on excitation in both single- and multi-exciton regime. These two linear channels coupled to a spontaneous discharging channel (∼2 events/s) to dictate the QDs from nonblinking to gradually blinking under increasing excitation. For high-quality CdSe/CdS core/shell QDs, Auger ionization of multiexciton for both charging and discharging is negligible
    corecore