67 research outputs found

    Measurements of the Mass and Full-Width of the ηc\eta_c Meson

    Get PDF
    In a sample of 58 million J/ψJ/\psi events collected with the BES II detector, the process J/ψγηc\psi\to\gamma\eta_c is observed in five different decay channels: γK+Kπ+π\gamma K^+K^-\pi^+\pi^-, γπ+ππ+π\gamma\pi^+\pi^-\pi^+\pi^-, γK±KS0π\gamma K^\pm K^0_S \pi^\mp (with KS0π+πK^0_S\to\pi^+\pi^-), γϕϕ\gamma \phi\phi (with ϕK+K\phi\to K^+K^-) and γppˉ\gamma p\bar{p}. From a combined fit of all five channels, we determine the mass and full-width of ηc\eta_c to be mηc=2977.5±1.0(stat.)±1.2(syst.)m_{\eta_c}=2977.5\pm1.0 ({stat.})\pm1.2 ({syst.}) MeV/c2c^2 and Γηc=17.0±3.7(stat.)±7.4(syst.)\Gamma_{\eta_c} = 17.0\pm3.7 ({stat.})\pm7.4 ({syst.}) MeV/c2c^2.Comment: 9 pages, 2 figures and 4 table. Submitted to Phys. Lett.

    A Measurement of Psi(2S) Resonance Parameters

    Full text link
    Cross sections for e+e- to hadons, pi+pi- J/Psi, and mu+mu- have been measured in the vicinity of the Psi(2S) resonance using the BESII detector operated at the BEPC. The Psi(2S) total width; partial widths to hadrons, pi+pi- J/Psi, muons; and corresponding branching fractions have been determined to be Gamma(total)= (264+-27) keV; Gamma(hadron)= (258+-26) keV, Gamma(mu)= (2.44+-0.21) keV, and Gamma(pi+pi- J/Psi)= (85+-8.7) keV; and Br(hadron)= (97.79+-0.15)%, Br(pi+pi- J/Psi)= (32+-1.4)%, Br(mu)= (0.93+-0.08)%, respectively.Comment: 8 pages, 6 figure

    Partial Wave Analysis of J/ψγ(K+Kπ+π)J/\psi \to \gamma (K^+K^-\pi^+\pi^-)

    Full text link
    BES data on J/ψγ(K+Kπ+π)J/\psi \to \gamma (K^+K^-\pi^+\pi^-) are presented. The KKˉK^*\bar K^* contribution peaks strongly near threshold. It is fitted with a broad 0+0^{-+} resonance with mass M=1800±100M = 1800 \pm 100 MeV, width Γ=500±200\Gamma = 500 \pm 200 MeV. A broad 2++2^{++} resonance peaking at 2020 MeV is also required with width 500\sim 500 MeV. There is further evidence for a 2+2^{-+} component peaking at 2.55 GeV. The non-KKˉK^*\bar K^* contribution is close to phase space; it peaks at 2.6 GeV and is very different from KKˉK^{*}\bar{K^{*}}.Comment: 15 pages, 6 figures, 1 table, Submitted to PL

    Measurement of Branching Ratios for ηc\eta_c Hadronic Decays

    Get PDF
    In a sample of 58 million J/ψJ/\psi events collected with the BES II detector, the process J/ψγηc\psi\to\gamma\eta_c is observed in five decay channels: ηcK+Kπ+π\eta_c \to K^+K^-\pi^+\pi^-, π+ππ+π\pi^+\pi^-\pi^+\pi^-, K±KS0πK^\pm K^0_S \pi^\mp (with KS0π+πK^0_S\to\pi^+\pi^-), ϕϕ\phi\phi (with ϕK+K\phi\to K^+K^-) and ppˉp\bar{p}. From these signals, we determine Br(J/ψγηc)×Br(ηcK+Kπ+π)Br(J/\psi\to\gamma\eta_c)\times Br(\eta_c\to K^+K^-\pi^+\pi^-) =(1.5±0.2±0.2)×104=(1.5\pm0.2\pm0.2)\times10^{-4}, Br(J/ψγηc)×Br(ηcπ+ππ+π)Br(J/\psi\to\gamma\eta_c)\times Br(\eta_c\to \pi^+\pi^-\pi^+\pi^-) =(1.3±0.2±0.4)×104=(1.3\pm0.2\pm0.4)\times10^{-4}, Br(J/ψγηc)×Br(ηcK±KS0π)Br(J/\psi\to\gamma\eta_c)\times Br(\eta_c\to K^\pm K_{S}^{0}\pi^\mp) =(2.2±0.3±0.5)×104=(2.2\pm0.3\pm0.5)\times10^{-4}, Br(J/ψγηc)×Br(ηcϕϕ)Br(J/\psi\to\gamma\eta_c)\times Br(\eta_c\to \phi\phi) =(3.3±0.6±0.6)×105=(3.3\pm0.6\pm0.6)\times10^{-5} and Br(J/ψγηc)×Br(ηcppˉ)Br(J/\psi\to\gamma\eta_c)\times Br(\eta_c\to p\bar{p}) =(1.9±0.3±0.3)×105=(1.9\pm0.3\pm0.3)\times10^{-5}.Comment: 8 pages, 1 figures and 4 table. Submitted to Phys. Lett.

    Evidence of psi(3770) non-DD-bar Decay to J/psi pi+pi-

    Full text link
    Evidence of ψ(3770)\psi(3770) decays to a non-DDˉ{D \bar D} final state is observed. A total of 11.8±4.8±1.311.8 \pm 4.8 \pm 1.3 \psi(3770) \to \PPJP events are obtained from a data sample of 27.7 pb1\rm {pb^{-1}} taken at center-of-mass energies around 3.773 GeV using the BES-II detector at the BEPC. The branching fraction is determined to be BF(\psi(3770) \to \PPJP)=(0.34\pm 0.14 \pm 0.09)%, corresponding to the partial width of \Gamma(\psi(3770) \to \PPJP) = (80 \pm 33 \pm 23) keV.Comment: 8 pages, 7 figures, Submitted to Physics Letters

    Measurements of J/psi --> p \bar{p}

    Full text link
    The process J/\psi --> p \bar{p} is studied using 57.7 X 10^6 J/\psi events collected with the BESII detector at the Beijing Electron Positron Collider. The branching ratio is determined to be Br(J/\psi --> p \bar{p})=(2.26 +- 0.01 +- 0.14) X 10^{-3}, and the angular distribution is well described by \frac{dN}{d cos\theta_p}=1+\alpha\cos^2\theta_p with \alpha = 0.676 +- 0.036 +- 0.042, where \theta_p is the angle between the proton and beam directions. The value of \alpha obtained is in good agreement with the predictions of first-order QCD.Comment: 6 pages, 2 figures, RevTex4, Submitted to Phys.Lett.

    A Study of J/psi-->gamma gamma V(rho,phi) Decays with the BESII Detector

    Full text link
    Using a sample of 58×10658\times 10^6 J/ψJ/\psi events collected with the BESII detector, radiative decays J/ψγγVJ/\psi\to\gamma\gamma V, where V=ρV=\rho or ϕ\phi, are studied. A resonance around 1420 MeV/c2^2 (X(1424)) is observed in the γρ\gamma\rho mass spectrum. Its mass and width are measured to be 1424±10(stat)±11(sys)1424\pm 10(stat)\pm 11(sys) MeV/c2^2 and 101.0±8.8±8.8 101.0\pm 8.8 \pm 8.8 MeV/c2^2, respectively, and its branching ratio B(J/ψγX(1424)γγρ)B(J/\psi\to \gamma X(1424)\to \gamma \gamma \rho) is determined to be (1.07±0.17±0.11)×104(1.07\pm0.17 \pm 0.11)\times 10^{-4}. A search for X(1424)γϕX(1424)\to \gamma\phi yields a 95% C.L. upper limit B(J/ψγX(1424)γγϕ)<0.82×104B(J/\psi\to \gamma X(1424)\to \gamma\gamma \phi) < 0.82 \times 10^{-4}.Comment: 10 pages, 5 figures, submitted to PL

    Search for K_S K_S in J/psi and psi(2S) decays

    Get PDF
    The CP violating processes J/psi-->K_S K_S and psi(2S)-->K_S K_S are searched for using samples of 58 million J/psi and 14 million psi(2S) events collected with the Beijing Spectrometer at the Beijing Electron Positron Collider. No signal is observed, and upper limits on the decay branching ratios are determined to be BR(J/psi-->K_S K_S) K_S K_S) < 4.6x10^{-6} at the 95% confidence level.Comment: 6 pages, 4 figures, submitted to Phys. Lett.

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    Circadian control of tissue homeostasis and adult stem cells.

    No full text
    The circadian timekeeping mechanism adapts physiology to the 24-hour light/dark cycle. However, how the outputs of the circadian clock in different peripheral tissues communicate and synchronize each other is still not fully understood. The circadian clock has been implicated in the regulation of numerous processes, including metabolism, the cell cycle, cell differentiation, immune responses, redox homeostasis, and tissue repair. Accordingly, perturbation of the machinery that generates circadian rhythms is associated with metabolic disorders, premature ageing, and various diseases including cancer. Importantly, it is now possible to target circadian rhythms through systemic or local delivery of time cues or compounds. Here, we summarize recent findings in peripheral tissues that link the circadian clock machinery to tissue-specific functions and diseases
    corecore