104 research outputs found

    Development of an Analytical Method for Distinguishing Ammonium Bicarbonate from the Products of an Aqueous Ammonia Co2 Scrubber and the Characterization of Ammonium Bicarbonate

    Get PDF
    The link between anthropogenic emissions of CO2 with increased atmospheric CO2 levels and, in turn, with increased global temperature has been well established and accepted. Using aqueous ammonia to capture CO2 and produce an inexpensive nitrogen fertilizer, ammonium bicarbonate (ABC) has been thought as a feasible approach to CO2 sequestration. Due to the different concentrations of reactants and reaction conditions, different carbon-ammonium composites can be produced. In view of achieving a maximum of NH3 utilization in the capture of CO2, the product of ABC will be ideal. Hence the ABC in the products needs to be identified. Various analytical techniques were used to distinguish the ABC. FTIR, DSC, TGA and XRD techniques were used to qualitatively distinguish the ammonium bicarbonate from the ammonium salts. The carbon, hydrogen and nitrogen element analysis and Near Infrared (NIR) techniques were used as quantitative analysis of ABC. The AOTF-NIR Free Space spectrometer is an ideal tool for real-time, on-line measurements of ABC. Sample 01050401 and Sample 01060401 from the CO2 Scrubbing experiment by aqueous ammonia at WKU were determined by these techniques as ammonium bicarbonate and have very good quality as fertilizer in accordance with GB -3559-92 Agriculture Ammonium Bicarbonate National Standard of China. During fertilizer storage and application, an amount of ABC will decompose into NH3, H2O and CO2. Long-effect ABC (LEABC) is a product of co-crystallized dicyanodiamide (DCD) and ABC. In order to evaluate ABC fertilizer efficiency and its contribution to permanent carbon fixation, tests with Thermogravimetric Analysis (TGA) were conducted. The experiments by TGA indicated that the temperature and air flow rate have much less effect on the evaporation of the LEABC than on the ABC. Kinetic studies of ABC and LEABC gave their Activation Energy. At the 7.5% conversion rate, LEABC’s Activation Energy is 111.9 kJ/mole, which is greater than ABC’s Activation Energy 93.6 kJ/mole. The difference in Activation Energy explains the reason of different stability of ABC and LEABC

    地下水の浸透力による地盤の変形挙動

    Get PDF
    広島大学(Hiroshima University)博士(工学)Doctor of Engineeringdoctora

    Active random force promotes diffusion in bacterial cytoplasm

    Full text link
    Experiments have found that diffusion in metabolically active cells is much faster than in dormant cells, especially for large particles. However, the mechanism of this size-dependent diffusion enhancement in living cells is still unclear. In this work, we approximate the net effect of metabolic processes as a white-noise active force and simulate a model system of bacterial cytoplasm with a highly polydisperse particle size distribution. We find that diffusion enhancement in active cells relative to dormant cells can be more substantial for large particles. Our simulations agree quantitatively with the experimental data of Escherichia coli, suggesting an autocorrelation function of the active force proportional to the cube of particle radius. We demonstrate that such a white-noise active force is equivalent to an active force of about 0.57 pN with random orientation. Our work unveils an emergent simplicity of random processes inside living cells.Comment: 20 pages, 18 figure

    Design and research of hydraulic cylinder precise control test system

    Get PDF
    The position deviation after the continuous action of the hydraulic support in the fully-mechanized mining face affects the mining efficiency of the shearer. In view of the above problems, the mechanism of the hydraulic system of the fully-mechanized mining face is analyzed, the coupling relationship between the system pressure, flow and the displacement of the hydraulic cylinder is established, and a hydraulic cylinder precise displacement test platform with emulsion/pure water as the transmission medium is designed and built, which can carry out eccentric load and lateral load experiments of the test hydraulic cylinder. The test platform is composed of hydraulic test system, oil pressure regulation system, electrical control system, data acquisition system, upper computer software system, loading test bench, etc. The oil pressure regulation mechanism adjusts the working attitude of the hydraulic cylinder, the data acquisition system monitors and tests the pressure, flow, displacement, temperature and other data of the hydraulic cylinder in real time, and the loading test bench equates the hydraulic support, scraper conveyor and shearer as adjustable weight. Data acquisition frequency of the hydraulic cylinder precise control test system is 2 000 Hz, the nominal pressure is 31.5 MPa, the nominal flow is 400 L / min, the test hydraulic cylinder has a cylinder diameter of 100-240 mm, a stroke of 400-1 800 mm, and the working resistance is larger than 100 kN, which can achieve the working mechanism of the hydraulic cylinder under variable working conditions. When the system flow is 126 L/min, the displacement control error of the tested hydraulic cylinder is close to 20%; when the system flow is 50 L/min, the displacement control error of the tested hydraulic cylinder is stable within 7%. The experimental results show that the transient action of hydraulic cylinder extension and retraction can be ignored in the working process, and the displacement control error is mainly caused by the response delay of valve control components, and the control error increases linearly with the increase of system flow, which verifies the feasibility of the high flow rapid action and small flow precise regulation control scheme of the two speed pressure regulating valve. The hydraulic cylinder precise control test system is applicable to the research on the precise control of hydraulic cylinder and the coordinated control of hydraulic cylinder cluster, and provides an experimental method for realizing the precise control of hydraulic support in high-pressure and large flow fully-mechanized mining face

    Dry Anaerobic Digestion for Agricultural Waste Recycling

    Get PDF
    For sustainable agriculture, it is important to manage agricultural wastes, such as crop residues and livestock wastes. Anaerobic digestion has been gathering the attention to recycle these wastes into renewable energy (biogas) and fertilizer (soil amendment) (digestate). Dry anaerobic digestion is defined as digestion at higher than 20% of total solid (TS) content in the reactor, which is suitable for wastes with high TS content, such as agricultural wastes. In this chapter, we reviewed recent advances in biogas production and use of digestate as soil amendment from dry anaerobic digestion of agricultural wastes. It has been found that ammonia concentration, feed/inoculum (F/I) ratio, and TS content are important parameters for operation of dry anaerobic digestion. Several operation technologies have been in operation, while new operation strategies have been developed. Application of solid digestate into the soil is beneficial to increase soil properties; however it should be carefully operated because it has risks of nitrate leaching and soil pathogens

    Beta-Ga2O3 MOSFETs with near 50 GHz fMAX and 5.4 MV/cm average breakdown field

    Full text link
    This letter reports high-performance $\mathrm{\beta} Ga2O3 thin channel MOSFETs with T-gate and degenerately doped source/drain contacts regrown by MOCVD. Gate length scaling (LG= 160-200 nm) leads to a peak drain current (ID,MAX) of 285 mA/mm and peak trans-conductance (gm) of 52 mS/mm at 10 V drain bias with 23.5 Ohm mm on resistance (Ron). A low metal/n+ contact resistance of 0.078 Ohm mm was extracted from TLM measurement. Ron is dominated by interface resistance between channel and regrown layer. A gate-to-drain breakdown voltage of 192 V is measured for LGD = 355 nm resulting in average breakdown field (E_AVG) of 5.4 MV/cm. This E_AVG is the highest reported among all sub-micron gate length lateral FETs. RF measurements on 200 nm Silicon Nitride (Si3N4) passivated device shows a current gain cut off frequency (f_T) of 11 GHz and record power gain cut off frequency (f_MAX) of 48 GHz. The f_T.V_Br product is 2.11 THz.V for 192 V breakdown voltage. The switching figure of merit exceeds that of silicon and is comparable to mature wide-band gap devices

    Small RNA zippers lock miRNA molecules and block miRNA function in mammalian cells.

    Get PDF
    MicroRNAs (miRNAs) loss-of-function phenotypes are mainly induced by chemically modified antisense oligonucleotides. Here we develop an alternative inhibitor for miRNAs, termed \u27small RNA zipper\u27. It is designed to connect miRNA molecules end to end, forming a DNA-RNA duplex through a complementary interaction with high affinity, high specificity and high stability. Two miRNAs, miR-221 and miR-17, are tested in human breast cancer cell lines, demonstrating the 70∼90% knockdown of miRNA levels by 30-50 nM small RNA zippers. The miR-221 zipper shows capability in rescuing the expression of target genes of miR-221 and reversing the oncogenic function of miR-221 in breast cancer cells. In addition, we demonstrate that the miR-221 zipper attenuates doxorubicin resistance with higher efficiency than anti-miR-221 in human breast cancer cells. Taken together, small RNA zippers are a miRNA inhibitor, which can be used to induce miRNA loss-of-function phenotypes and validate miRNA target genes

    Effects of Octenyl-Succinylated Chitosan—Whey Protein Isolated on Emulsion Properties, Astaxanthin Solubility, Stability, and Bioaccessibility

    Get PDF
    The synthesis of octenyl-succinylated chitosan with different degrees of substitution resulting from chemical modification of chitosan and controlled addition of octenyl succinic acid was investigated. The modified products were characterized using 1H NMR, FTIR, and XRD, and the degree of substitution was also determined. The properties of the modified chitosan oligosaccharide in solution were evaluated by surface tension and dye solubilization, finding that the molecules self-assembled when they are above the critical aggregation concentration. The two methods yielded consistent results, showing that the self-assembly was reduced with higher levels of substitution. The antimicrobial activity of the octanyl-succinylated chitosan oligosaccharide (OSA-COS) derivatives against Staphylococcus aureus, Escherichia coli, and Fusarium oxysporum f.sp cucumerinum was investigated by the Oxford cup method. While the acetylated COS derivatives were not significantly effective against either E coli or S. aureus, they showed significant antifungal activity toward F. oxysporum that was superior to that of COS. The modified product was found to form a stable emulsion when mixed with whey protein isolate. The emulsion formed by the highly substituted derivatives have a certain stability and loading efficiency, which can be used for the encapsulation and delivery of astaxanthin
    corecore