32,951 research outputs found
Channel Parameters Estimation Algorithm Based on The Characteristic Function under Impulse Noise Environment
Under communication environments, such as wireless sensor networks, the noise observed usually exhibits impulsive as well as Gaussian characteristics. In the initialization of channel iterative decoder, such as low density parity check codes, it is required in advance to estimate the channel parameters to obtain the prior information from the received signals. In this paper, a blind channel parameters estimator under impulsive noise environment is proposed, which is based on the empirical characteristic function in MPSK/MQAM higher-order modulation system. Simulation results show that for various MPSK/MQAM modulations, the estimator can obtain a more accurate unbiased estimation even though we do not know which kind of higher-order modulation is used
Quantitative test of a quantum theory for the resistive transition in a superconducting single-walled carbon nanotube bundle
The phenomenon of superconductivity depends on the coherence of the phase of
the superconducting order parameter. The resistive transition in
quasi-one-dimensional (quasi-1D) superconductors is broad because of a large
phase fluctuation. We show that the resistive transition of a superconducting
single-walled carbon nanotube bundle is in quantitative agreement with the
Langer-Ambegaokar-McCumber-Halperin (LAMH) theory. We also demonstrate that the
resistive transition below T^*_c = 0.89T_c0 is simply proportional to exp
[-(3\beta T^*_c/T)(1-T/T^*_c)^3/2], where the barrier height has the same form
as that predicted by the LAMH theory and T_c0 is the mean field superconducting
transition temperature.Comment: 4 pages, 3 figure
Relativistic description of nuclear matrix elements in neutrinoless double- decay
Neutrinoless double- () decay is related to many
fundamental concepts in nuclear and particle physics beyond the standard model.
Currently there are many experiments searching for this weak process. An
accurate knowledge of the nuclear matrix element for the decay
is essential for determining the effective neutrino mass once this process is
eventually measured. We report the first full relativistic description of the
decay matrix element based on a state-of-the-art nuclear
structure model. We adopt the full relativistic transition operators which are
derived with the charge-changing nucleonic currents composed of the vector
coupling, axial-vector coupling, pseudoscalar coupling, and weak-magnetism
coupling terms. The wave functions for the initial and final nuclei are
determined by the multireference covariant density functional theory (MR-CDFT)
based on the point-coupling functional PC-PK1. The low-energy spectra and
electric quadrupole transitions in Nd and its daughter nucleus
Sm are well reproduced by the MR-CDFT calculations. The
decay matrix elements for both the
and decays of Nd are evaluated. The effects
of particle number projection, static and dynamic deformations, and the full
relativistic structure of the transition operators on the matrix elements are
studied in detail. The resulting decay matrix element for the
transition is , which gives the most optimistic
prediction for the next generation of experiments searching for the
decay in Nd.Comment: 17 pages, 9 figures; table adde
Simultaneous planar growth of amorphous and crystalline Ni silicides
We report a solid-state interdiffusion reaction induced by rapid thermal annealing and vacuum furnace annealing in evaporated Ni/Si bilayers. Upon heat treatment of a Ni film overlaid on a film of amorphous Si evaporated from a graphite crucible, amorphous and crystalline silicide layers grow uniformly side by side as revealed by cross-sectional transmission electron microscopy and backscattering spectrometry. This phenomenon contrasts with the silicide formation behavior previously observed in the Ni-Si system, and constitutes an interesting counterpart of the solid-state interdiffusion-induced amorphization in Ni/Zr thin-film diffusion couples. Carbon impurity contained in the amorphous Si film stabilizes the amorphous phase. Kinetic and thermodynamic factors that account for the experimental findings are discussed
A unified approach to linking experimental, statistical and computational analysis of spike train data
A fundamental issue in neuroscience is how to identify the multiple biophysical mechanisms through which neurons generate observed patterns of spiking activity. In previous work, we proposed a method for linking observed patterns of spiking activity to specific biophysical mechanisms based on a state space modeling framework and a sequential Monte Carlo, or particle filter, estimation algorithm. We have shown, in simulation, that this approach is able to identify a space of simple biophysical models that were consistent with observed spiking data (and included the model that generated the data), but have yet to demonstrate the application of the method to identify realistic currents from real spike train data. Here, we apply the particle filter to spiking data recorded from rat layer V cortical neurons, and correctly identify the dynamics of an slow, intrinsic current. The underlying intrinsic current is successfully identified in four distinct neurons, even though the cells exhibit two distinct classes of spiking activity: regular spiking and bursting. This approach â linking statistical, computational, and experimental neuroscience â provides an effective technique to constrain detailed biophysical models to specific mechanisms consistent with observed spike train data.Published versio
Systematic study of nuclear matrix elements in neutrinoless double-beta decay with a beyond mean-field covariant density functional theory
We report a systematic study of nuclear matrix elements (NMEs) in
neutrinoless double-beta decays with a state-of-the-art beyond mean-field
covariant density functional theory. The dynamic effects of particle-number and
angular-momentum conservations as well as quadrupole shape fluctuations are
taken into account with projections and generator coordinate method for both
initial and final nuclei. The full relativistic transition operator is adopted
to calculate the NMEs. The present systematic studies show that in most of the
cases there is a much better agreement with the previous non-relativistic
calculation based on the Gogny force than in the case of the nucleus Nd
found in Song et al. [Phys. Rev. C 90, 054309 (2014)]. In particular, we find
that the total NMEs can be well approximated by the pure axial-vector coupling
term with a considerable reduction of the computational effort.Comment: 9 pages with 7 figures and 3 table
Self-gravitating Yang Monopoles in all Dimensions
The (2k+2)-dimensional Einstein-Yang-Mills equations for gauge group SO(2k)
(or SU(2) for k=2 and SU(3) for k=3) are shown to admit a family of
spherically-symmetric magnetic monopole solutions, for both zero and non-zero
cosmological constant Lambda, characterized by a mass m and a magnetic-type
charge. The k=1 case is the Reissner-Nordstrom black hole. The k=2 case yields
a family of self-gravitating Yang monopoles. The asymptotic spacetime is
Minkowski for Lambda=0 and anti-de Sitter for Lambda<0, but the total energy is
infinite for k>1. In all cases, there is an event horizon when m>m_c, for some
critical mass , which is negative for k>1. The horizon is degenerate when
m=m_c, and the near-horizon solution is then an adS_2 x S^{2k} vacuum.Comment: 16 pp. Extensive revision to include case of non-zero cosmological
constant and implications for adS/CFT. Numerous additional reference
- âŚ