33,397 research outputs found

    Channel Parameters Estimation Algorithm Based on The Characteristic Function under Impulse Noise Environment

    Get PDF
    Under communication environments, such as wireless sensor networks, the noise observed usually exhibits impulsive as well as Gaussian characteristics. In the initialization of channel iterative decoder, such as low density parity check codes, it is required in advance to estimate the channel parameters to obtain the prior information from the received signals. In this paper, a blind channel parameters estimator under impulsive noise environment is proposed, which is based on the empirical characteristic function in MPSK/MQAM higher-order modulation system. Simulation results show that for various MPSK/MQAM modulations, the estimator can obtain a more accurate unbiased estimation even though we do not know which kind of higher-order modulation is used

    Photolithographic micropatterning of organic, flexible biomaterials and its applications

    Get PDF
    A current trend in biodevices has involved a shift from traditional rigid platforms to flexible and stretchable formats. These flexible devices are expected to have a significant impact on future healthcare, disease diagnostics and therapeutics. However, the fabrication of such flexible devices has been limited by the choice of materials. Biomimetic composites of naturally derived and synthetic polymers provide exciting opportunities to develop mechanically flexible, physiologically compliant, and degradable bioelectronic systems. Advantages include the ability to provide conformal contact at non-planar biointerfaces, being able to be degraded at controllable rate, and invoking minimal reactions within the body. These factors present great potential as implantable devices for in-vivo applications, while also addressing concerns with “electronic waste” by being intrinsically degradable. In this work, we present a combination of photo-crosslinkable silk proteins and conductive polymers to precisely fabricate flexible devices and cell culture substrate. A facile and scalable photolithography is applied to fabricate flexible substrates with conductive and non- conductive micropatterns which show tuneable electrical and mechanical properties. We also demonstrate an approach to engineer flexibility in materials through the creation of patterned defects inspired from Kirigami- the Japanese art of paper cutting. Mechanically flexible, free- standing, optically transparent, large-area biomaterial sheets with precisely defined and computationally designed microscale cuts can be formed using a single-step photolithographic process. As composites with conducting polymers, flexible, intrinsically electroactive sheets can be formed. Through this work, the possibility of making next- generation, fully organic, flexible bioelectronics is explored.https://scholarscompass.vcu.edu/gradposters/1099/thumbnail.jp

    Criticality in quark-gluon systems far beyond thermal and chemical equilibrium

    Full text link
    Experimental evidence and theoretical arguments for the existence of self-organized criticality in systems of gluons and quarks are presented. It is observed that the existing data for high-transverse-momentum jet-production exhibit striking regularities; and it is shown that, together with first-principle considerations, such regularities can be used, not only to probe the possible compositness of quarks, but also to obtain {\em direct evidence} for, or against, the existence of critical temperature and/or critical chemical potential in quark-gluon systems when hadrons are squeezed together.Comment: 13 pages, including 1 figure and 1 tabl

    An MHD Model For Magnetar Giant Flares

    Full text link
    Giant flares on soft gamma-ray repeaters that are thought to take place on magnetars release enormous energy in a short time interval. Their power can be explained by catastrophic instabilities occurring in the magnetic field configuration and the subsequent magnetic reconnection. By analogy with the coronal mass ejection (CME) events on the Sun, we develop a theoretical model via an analytic approach for magnetar giant flares. In this model, the rotation and/or displacement of the crust causes the field to twist and deform, leading to flux rope formation in the magnetosphere and energy accumulation in the related configuration. When the energy and helicity stored in the configuration reach a threshold, the system loses its equilibrium, the flux rope is ejected outward in a catastrophic way, and magnetic reconnection helps the catastrophe develop to a plausible eruption. By taking SGR 1806 - 20 as an example, we calculate the free magnetic energy released in such an eruptive process and find that it is more than 104710^{47} ergs, which is enough to power a giant flare. The released free magnetic energy is converted into radiative energy, kinetic energy and gravitational energy of the flux rope. We calculated the light curves of the eruptive processes for the giant flares of SGR 1806 - 20, SGR 0526-66 and SGR 1900+14, and compared them with the observational data. The calculated light curves are in good agreement with the observed light curves of giant flares.Comment: Accepted to Ap
    corecore