19 research outputs found

    In Liquid Plasma for Surface Engineering of Cu Electrodes with Incorporated SiO2 Nanoparticles From Micro to Nano

    Get PDF
    A robust and efficient route to modify the chemical and physical properties of polycrystalline copper Cu wires via versatile plasma electrolysis is presented. Silica SiO2 nanoparticles 11 nm are introduced during the electrolysis to tailor the surface structure of the Cu electrode. The influence of these SiO2 nanoparticles on the structure of the Cu electrodes during plasma electrolysis over a wide array of applied voltages and processing time is investigated systematically. Homogeneously distributed 3D coral like microstructures are observed by scanning electron microscopy on the Cu surface after the in liquid plasma treatment. These 3D microstructures grow with increasing plasma processing time. Interestingly, the microstructured copper electrode is composed of CuO as a thin outer layer and a significant amount of inner Cu2O. Furthermore, the oxide film thickness between 1 and 70 m , the surface morphology, and the chemical composition can be tuned by controlling the plasma parameters. Remarkably, the fabricated microstructures can be transformed to nanospheres assembled in coral like microstructures by a simple electrochemical treatmen

    Quark Matter in a Strong Magnetic Background

    Full text link
    In this chapter, we discuss several aspects of the theory of strong interactions in presence of a strong magnetic background. In particular, we summarize our results on the effect of the magnetic background on chiral symmetry restoration and deconfinement at finite temperature. Moreover, we compute the magnetic susceptibility of the chiral condensate and the quark polarization at zero temperature. Our theoretical framework is given by chiral models: the Nambu-Jona-Lasinio (NJL), the Polyakov improved NJL (or PNJL) and the Quark-Meson (QM) models. We also compare our results with the ones obtained by other groups.Comment: 34 pages, survey. To appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time, and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space. While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes, vast areas of the tropics remain understudied. In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity, but it remains among the least known forests in America and is often underrepresented in biodiversity databases. To worsen this situation, human-induced modifications may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge, it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    The global burden of cancer attributable to risk factors, 2010–19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    BACKGROUND: Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. METHODS: The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk–outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. FINDINGS: Globally, in 2019, the risk factors included in this analysis accounted for 4·45 million (95% uncertainty interval 4·01–4·94) deaths and 105 million (95·0–116) DALYs for both sexes combined, representing 44·4% (41·3–48·4) of all cancer deaths and 42·0% (39·1–45·6) of all DALYs. There were 2·88 million (2·60–3·18) risk-attributable cancer deaths in males (50·6% [47·8–54·1] of all male cancer deaths) and 1·58 million (1·36–1·84) risk-attributable cancer deaths in females (36·3% [32·5–41·3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20·4% (12·6–28·4) and DALYs by 16·8% (8·8–25·0), with the greatest percentage increase in metabolic risks (34·7% [27·9–42·8] and 33·3% [25·8–42·0]). INTERPRETATION: The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden
    corecore