8,340 research outputs found

    Adaptive-wall wind-tunnel research at NASA-Ames Research Center

    Get PDF
    Adaptive wall wind tunnel research is summarized. Small scale two and three dimensional wind tunnel experiments and numerical experiments with a three dimensional adaptive wall simulator are included. A NACA 0012 airfoil was tested in a 25 by 13 cm slotted wall test section. Airflow through the test section walls was controlled by adjusting the pressures in segmented plenums. Interference free conditions were successfully attained in subsonic and transonic flows. For the three dimensional experiment, the 25 by 13 cm wind tunnel was modified to permit cross stream wall adjustments. The test model was a semispan wing mounted to one sidewall. Wall interference was substantially reduced at several angles of attack at Mach 0.60. A wing on wall configuration was also modeled in the numerical experiments. These flow simulations showed that free air conditions can be approximated by adjusting boundary conditions at only the floor and ceiling of the test section. No sidewall control was necessary. Typical results from these experiments are discussed

    MOND as the weak-field limit of an extended metric theory of gravity

    Full text link
    We show that the Modified Newtonian Dynamics (MOND) regime can be fully recovered as the weak-field limit of a particular theory of gravity formulated in the metric approach. This is possible when Milgrom's acceleration constant is taken as a fundamental quantity which couples to the theory in a very consistent manner. As a consequence, the scale invariance of the gravitational interaction is naturally broken. In this sense, Newtonian gravity is the weak-field limit of general relativity and MOND is the weak-field limit of that particular extended theory of gravity.Comment: To appear in the proceedings of the 2011 Spanish Relativity Meeting (ERE2011) held in Madrid, Spain, 4 page

    Transport enhancement from incoherent coupling between one-dimensional quantum conductors

    Get PDF
    We study the non-equilibrium transport properties of a highly anisotropic two-dimensional lattice of spin-1/2 particles governed by a Heisenberg XXZ Hamiltonian. The anisotropy of the lattice allows us to approximate the system at finite temperature as an array of incoherently coupled one-dimensional chains. We show that in the regime of strong intrachain interactions, the weak interchain coupling considerably boosts spin transport in the driven system. Interestingly, we show that this enhancement increases with the length of the chains, which is related to superdiffusive spin transport. We describe the mechanism behind this effect, compare it to a similar phenomenon in single chains induced by dephasing, and explain why the former is much stronger

    Non-relativistic Extended Gravity and its applications across different astrophysical scales

    Full text link
    Using dimensional analysis techniques we present an extension of Newton's gravitational theory built under the assumption that Milgrom's acceleration constant is a fundamental quantity of nature. The gravitational force converges to Newton's gravity and to a MOND-like description in two different mass and length regimes. It is shown that a modification on the force sector (and not in the dynamical one as MOND does) is more convenient and can reproduce and predict different phenomena usually ascribed to dark matter at the non-relativistic level.Comment: 4 pages, 2 figures. To appear in the proceedings of the 2011 Spanish Relativity Meeting (ERE2011) held in Madrid, Spai

    Exclusive W + photon production in proton-antiproton collisions I: general formalism

    Full text link
    We present a detailed computation of the fully exclusive cross section of p + antip --> W + photon + X with X = 0 and 1 jet in the framework of the factorization theorem and dimensional regularization. Order alpha-strong and photon bremsstrahlung contributions are discussed in the MS-bar mass factorization scheme. The resulting expressions are ready to be implemented numerically using Monte Carlo techniques to compute single and double differential cross sections and correlations between outgoing pairs of particles.Comment: ITP-SB-93-72, 40 pages, LateX. 3*4 figures in separate file. ([email protected]) ([email protected]

    A Comprehensive X-ray Absorption Model for Atomic Oxygen

    Get PDF
    An analytical formula is developed to represent accurately the photoabsorption cross section of O I for all energies of interest in X-ray spectral modeling. In the vicinity of the Kedge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models
    corecore