10,233 research outputs found

    k-core organization of complex networks

    Full text link
    We analytically describe the architecture of randomly damaged uncorrelated networks as a set of successively enclosed substructures -- k-cores. The k-core is the largest subgraph where vertices have at least k interconnections. We find the structure of k-cores, their sizes, and their birth points -- the bootstrap percolation thresholds. We show that in networks with a finite mean number z_2 of the second-nearest neighbors, the emergence of a k-core is a hybrid phase transition. In contrast, if z_2 diverges, the networks contain an infinite sequence of k-cores which are ultra-robust against random damage.Comment: 5 pages, 3 figure

    k-core (bootstrap) percolation on complex networks: Critical phenomena and nonlocal effects

    Full text link
    We develop the theory of the k-core (bootstrap) percolation on uncorrelated random networks with arbitrary degree distributions. We show that the k-core percolation is an unusual, hybrid phase transition with a jump emergence of the k-core as at a first order phase transition but also with a critical singularity as at a continuous transition. We describe the properties of the k-core, explain the meaning of the order parameter for the k-core percolation, and reveal the origin of the specific critical phenomena. We demonstrate that a so-called ``corona'' of the k-core plays a crucial role (corona is a subset of vertices in the k-core which have exactly k neighbors in the k-core). It turns out that the k-core percolation threshold is at the same time the percolation threshold of finite corona clusters. The mean separation of vertices in corona clusters plays the role of the correlation length and diverges at the critical point. We show that a random removal of even one vertex from the k-core may result in the collapse of a vast region of the k-core around the removed vertex. The mean size of this region diverges at the critical point. We find an exact mapping of the k-core percolation to a model of cooperative relaxation. This model undergoes critical relaxation with a divergent rate at some critical moment.Comment: 11 pages, 8 figure

    The interplay of university and industry through the FP5 network

    Full text link
    To improve the quality of life in a modern society it is essential to reduce the distance between basic research and applications, whose crucial roles in shaping today's society prompt us to seek their understanding. Existing studies on this subject, however, have neglected the network character of the interaction between university and industry. Here we use state-of-the-art network theory methods to analyze this interplay in the so-called Framework Programme--an initiative which sets out the priorities for the European Union's research and technological development. In particular we study in the 5th Framework Programme (FP5) the role played by companies and scientific institutions and how they contribute to enhance the relationship between research and industry. Our approach provides quantitative evidence that while firms are size hierarchically organized, universities and research organizations keep the network from falling into pieces, paving the way for an effective knowledge transfer.Comment: 21 pages (including Appendix), 8 figures. Published online at http://stacks.iop.org/1367-2630/9/18

    Diffusion in scale-free networks with annealed disorder

    Full text link
    The scale-free (SF) networks that have been studied so far contained quenched disorder generated by random dilution which does not vary with the time. In practice, if a SF network is to represent, for example, the worldwide web, then the links between its various nodes may temporarily be lost, and re-established again later on. This gives rise to SF networks with annealed disorder. Even if the disorder is quenched, it may be more realistic to generate it by a dynamical process that is happening in the network. In this paper, we study diffusion in SF networks with annealed disorder generated by various scenarios, as well as in SF networks with quenched disorder which, however, is generated by the diffusion process itself. Several quantities of the diffusion process are computed, including the mean number of distinct sites visited, the mean number of returns to the origin, and the mean number of connected nodes that are accessible to the random walkers at any given time. The results including, (1) greatly reduced growth with the time of the mean number of distinct sites visited; (2) blocking of the random walkers; (3) the existence of a phase diagram that separates the region in which diffusion is possible from one in which diffusion is impossible, and (4) a transition in the structure of the networks at which the mean number of distinct sites visited vanishes, indicate completely different behavior for the computed quantities than those in SF networks with quenched disorder generated by simple random dilution.Comment: 18 pages including 8 figure

    Bootstrap Percolation on Complex Networks

    Full text link
    We consider bootstrap percolation on uncorrelated complex networks. We obtain the phase diagram for this process with respect to two parameters: ff, the fraction of vertices initially activated, and pp, the fraction of undamaged vertices in the graph. We observe two transitions: the giant active component appears continuously at a first threshold. There may also be a second, discontinuous, hybrid transition at a higher threshold. Avalanches of activations increase in size as this second critical point is approached, finally diverging at this threshold. We describe the existence of a special critical point at which this second transition first appears. In networks with degree distributions whose second moment diverges (but whose first moment does not), we find a qualitatively different behavior. In this case the giant active component appears for any f>0f>0 and p>0p>0, and the discontinuous transition is absent. This means that the giant active component is robust to damage, and also is very easily activated. We also formulate a generalized bootstrap process in which each vertex can have an arbitrary threshold.Comment: 9 pages, 3 figure

    Effective action in DSR1 quantum field theory

    Full text link
    We present the one-loop effective action of a quantum scalar field with DSR1 space-time symmetry as a sum over field modes. The effective action has real and imaginary parts and manifest charge conjugation asymmetry, which provides an alternative theoretical setting to the study of the particle-antiparticle asymmetry in nature.Comment: 8 page

    Effective field theory for models defined over small-world networks. First and second order phase transitions

    Full text link
    We present an effective field theory method to analyze, in a very general way, models defined over small-world networks. Even if the exactness of the method is limited to the paramagnetic regions and to some special limits, it provides, yielding a clear and immediate (also in terms of calculation) physical insight, the exact critical behavior and the exact critical surfaces and percolation thresholds. The underlying structure of the non random part of the model, i.e., the set of spins filling up a given lattice L_0 of dimension d_0 and interacting through a fixed coupling J_0, is exactly taken into account. When J_0\geq 0, the small-world effect gives rise, as is known, to a second-order phase transition that takes place independently of the dimension d_0 and of the added random connectivity c. When J_0<0, a different and novel scenario emerges in which, besides a spin glass transition, multiple first- and second-order phase transitions may take place. As immediate analytical applications we analyze the Viana-Bray model (d_0=0), the one dimensional chain (d_0=1), and the spherical model for arbitrary d_0.Comment: 28 pages, 18 figures; merged version of the manuscripts arXiv:0801.3454 and arXiv:0801.3563 conform to the published versio

    Laplacian spectra of complex networks and random walks on them: Are scale-free architectures really important?

    Full text link
    We study the Laplacian operator of an uncorrelated random network and, as an application, consider hopping processes (diffusion, random walks, signal propagation, etc.) on networks. We develop a strict approach to these problems. We derive an exact closed set of integral equations, which provide the averages of the Laplacian operator's resolvent. This enables us to describe the propagation of a signal and random walks on the network. We show that the determining parameter in this problem is the minimum degree qmq_m of vertices in the network and that the high-degree part of the degree distribution is not that essential. The position of the lower edge of the Laplacian spectrum λc\lambda_c appears to be the same as in the regular Bethe lattice with the coordination number qmq_m. Namely, λc>0\lambda_c>0 if qm>2q_m>2, and λc=0\lambda_c=0 if qm2q_m\leq2. In both these cases the density of eigenvalues ρ(λ)0\rho(\lambda)\to0 as λλc+0\lambda\to\lambda_c+0, but the limiting behaviors near λc\lambda_c are very different. In terms of a distance from a starting vertex, the hopping propagator is a steady moving Gaussian, broadening with time. This picture qualitatively coincides with that for a regular Bethe lattice. Our analytical results include the spectral density ρ(λ)\rho(\lambda) near λc\lambda_c and the long-time asymptotics of the autocorrelator and the propagator.Comment: 25 pages, 4 figure
    corecore