13,436 research outputs found
Relative asymptotics for orthogonal matrix polynomials
In this paper we study sequences of matrix polynomials that satisfy a
non-symmetric recurrence relation. To study this kind of sequences we use a
vector interpretation of the matrix orthogonality. In the context of these
sequences of matrix polynomials we introduce the concept of the generalized
matrix Nevai class and we give the ratio asymptotics between two consecutive
polynomials belonging to this class. We study the generalized matrix Chebyshev
polynomials and we deduce its explicit expression as well as we show some
illustrative examples. The concept of a Dirac delta functional is introduced.
We show how the vector model that includes a Dirac delta functional is a
representation of a discrete Sobolev inner product. It also allows to
reinterpret such perturbations in the usual matrix Nevai class. Finally, the
relative asymptotics between a polynomial in the generalized matrix Nevai class
and a polynomial that is orthogonal to a modification of the corresponding
matrix measure by the addition of a Dirac delta functional is deduced
Potts model on complex networks
We consider the general p-state Potts model on random networks with a given
degree distribution (random Bethe lattices). We find the effect of the
suppression of a first order phase transition in this model when the degree
distribution of the network is fat-tailed, that is, in more precise terms, when
the second moment of the distribution diverges. In this situation the
transition is continuous and of infinite order, and size effect is anomalously
strong. In particular, in the case of , we arrive at the exact solution,
which coincides with the known solution of the percolation problem on these
networks.Comment: 6 pages, 1 figur
- …