1,130 research outputs found
STS atmospheric luminosities
During the STS-8 space shuttle mission special photographic and TV operations were carried out to record the properties of the spacecraft induced luminosities. One of these luminous phenomena is the quiescent vehicle glow which was photographed during the STS-8 mission with an image intensified photographic camera, with and without an objective grating. During the latter part of the mission the altitude of the shuttle was relatively low (120 n.m. = 222 km) and unprecedentedly high intensity of the glow was observed. The crew reported that the glow was easily visible to the naked eye. The proper orientation of the shuttle with respect to the velocity vector and the objective grating permitted the exposure of good objective spectrum of the glow in the visible region. From the results it is clear that the spectrum appears to be a continuum as observed by the image intensifier objective grating camera. Qualitative examination of the data shows that there is very tail little glow ion the wavelength range of 4300 to about 5000 angstroms. Above 5000 angstroms the glow becomes stronger towards the red and then it falls off towards higher wavelength and of the spectrum presumably because of the responsivity of the device
Coordinated analysis of data
All Sky Cameras (ASCA) observations were made at the field line conjugate of the ATS-5 Satellite. The field of view of these cameras covered the region of the magnetosphere from L=5 to L=ll at the approximate longitude of the ATS field line conjugate. Definite statements are made concerning the correlation of the auroras observed by the ASCA's and the magnetospheric trapped fluxes. No auroras are observed at the field line conjugate, on quiet days when the hot plasma does not penetrate into the magnetosphere far enough to reach the ATS-5 orbit. On more disturbed days, when the ATS-5 enters the plasma sheet containing plasma clouds, an equatorward motion of the lowest latitude auroral arc is observed. Significant qualitative correlation between the ASCA data and the trapped fluxes is observed when a local plasma injection event occurs near ATS-5. The clearest signature of the injection event is magnetic and is most pronounced as a recovery of a negative bay at the ATS-5 magnetometer. The most significant correlations are observed with the intensification of the diffuse uniform glow which intensifies during the injection event
Data requirements for verification of ram glow chemistry
A set of questions is posed regarding the surface chemistry producing the ram glow on the space shuttle. The questions surround verification of the chemical cycle involved in the physical processes leading to the glow. The questions, and a matrix of measurements required for most answers, are presented. The measurements include knowledge of the flux composition to and from a ram surface as well as spectroscopic signatures from the U to visible to IR. A pallet set of experiments proposed to accomplish the measurements is discussed. An interim experiment involving an available infrared instrument to be operated from the shuttle Orbiter cabin is also be discussed
Six channel photometric observations from the CV 990 aircraft Final report
Photometric observations of auroral scattering by CV 990 aircraf
Space shuttle ram glow: Implication of NO2 recombination continuum
The ram glow data gathered to data from imaging experiments on space shuttle suggest the glow is a continuum (within 34 angstrom resolution); the continuum shape is such that the peak is near 7000 angstroms decreasing to the blue and red, and the average molecular travel leading to emission after leaving the surface is 20 cm (assuming isotropic scattering from the surface). Emission continuum is rare in molecular systems but the measured spectrum does resemble the laboratory spectrum of NO2 (B) recombination continuum. The thickness of the observed emission is consistent with the NO2 hypothesis given an exit velocity of approx. 2.5 km/sec (1.3 eV) which leaves approx. 3.7 eV of ramming OI energy available for unbonding the recombined NO2 from the surface. The NO2 is formed in a 3-body recombination of OI + NO + m = NO2 + m where OI originates from the atmosphere and NO is chemically formed on the surface from atmospheric NI and OI. The spacecraft surface then acts as the n for the reaction: Evidence exists from orbital mass spectrometer data that the NO and NO2 chemistry described in this process does occur on surfaces of spectrometer orifices in orbit. Surface temperature effects are likely a factor in the NO sticking efficiency and, therefore, glow intensities
Atmospheric Emissions Photometric Imaging (AEPI) experiment
Space plasma physics will be studied on the Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission during the Atmospheric Emissions Photometric Imaging (AEPI) experiment. The basic scientific objective of the AEPI is the investigation of the upper atmosphere-ionosphere and the space shuttle environment. The experiment areas of the AEPI include: (1) the investigation of ionospheric transport processes by observing Mg(+) ions; (2) studies of optical properties of artificially induced electron beams; (3) measurement of electron cross sections for selected atmospheric species; (4) studies of natural airglow; and (5) studies of natural auroras. On ATLAS 1, optical emissions generated by the shuttle (shuttle ram glow) will also be investigated
Techniques for the measurements of the line of sight velocity of high altitude Barium clouds
It is demonstrated that for maximizing the scientific output of future ion cloud release experiments a new type of instrument is required which will measure the line of sight velocity of the ion cloud by the Doppler Technique. A simple instrument was constructed using a 5 cm diameter solid Fabry-Perot etalon coupled to a low light level integrating television camera. It was demonstrated that the system has both the sensitivity and spectral resolution for the detection of ion clouds and the measurement of their line of sight Doppler velocity. The tests consisted of (1) a field experiment using a rocket barium cloud release to check the sensitivity, (2) laboratory experiments to show the spectral resolving capabilities of the system. The instrument was found to be operational if the source was brighter than about 1 kilorayleigh and it had a wavelength resolution much better than .2A which corresponds to about 12 km/sec or an acceleration potential of 100 volts
Spacecraft ram glow and surface temperature
Space shuttle glow intensity measurements show large differences when the data from different missions are compared. In particular, on the 41-G mission the space shuttle ram glow was observed to display an unusually low intensity. Subsequent investigation of this measurement and earlier measurements suggest that there was a significant difference in temperature of the glow producing ram surfaces. The highly insulating properties coupled with the high emissivity of the shuttle tile results in surfaces that cool quickly when exposed to deep space on the night side of the orbit. The increased glow intensity is consistent with the hypothesis that the glow is emitted from excited NO2. The excited NO2 is likely formed through three body recombination (OI + NO + M = NO2*) where ramming of OI interacts with weakly surface bound NO. The NO is formed from atmospheric OI and NI which is scavenged by the spacecraft moving through the atmosphere. It is postulated that the colder surfaces retain a thicker layer of NO thereby increasing the probability of the reaction. It has been found from the glow intensity/temperature data that the bond energy of the surface bound precursor, leading to the chemical recombination producing the glow, is approximately 0.14 eV. A thermal analysis of material samples of STS-8 was made and the postulated temperature change of individual material samples prior to the time of glow measurements above respective samples are consistent with the thermal effect on glow found for the orbiter surface
Vehicle glow measurements on the space shuttle
From the combined data set of glow observations on shuttle flight STS-3, STS-4, STS-5, STS-8, STS-9, 41-E, and 41-G some of the properties of the shuttle glow are discussed. Comparison of the STS-3 and STS-5 (240 and 305 km altitude, respectively) photographs shows that the intensity of the glow is about a factor of 3.5 brighter on the low-altitude (STS-3) flight. In an experiment to observe the dependence of the intensity on the ram angle, the angle of incidence between the spacecraft surface normal and the velocity vector, the Orbiter was purposely rotated about the x axis on the STS-5 mission. For a relatively large angle between the velocity vector and the surface normal there is an appreciable glow, provided the surface is not shadowed by some other spacecraft structure. As the angle becomes less the glow intensifies. Material samples were also exposed in the ram direction during nightside orbits and the glow surrounding the samples was photographed
The measurements of vehicle glow on the Space Shuttle
From the combined data set of glow observations on STS-3, STS-4 and STS-5 some of the properties of the shuttle glow were observed. Comparison of the STS-3 (240 km) and STS-5 (305 km) photographs show that the intensity of the glow is about a factor of 3.5 brighter on the low altitude (STS-3) flight. The orbiter was purposely rotated about the x axis in an experiment on STS-5 to observe the dependence of the intensity on the angle of incidence between the spacecraft surface normal and the velocity vector. For a relatively large angle between the velocity vector and the surface normal there is an appreciable glow, provided the surface is not shadowed by some other spacecraft structure. As the angle becomes less the glow intensifies. The grating experiments (STS-4 photography only, STS-5 image intensifier photography) provided a preliminary low resolution spectra of the spacecraft glow. Accurate wavelength calibrations of the STS-5 instrument permitted measuring of the spectrum and intensity of the Earth's airglow
- …