242 research outputs found

    Topicality and Social Impact: Diverse Messages but Focused Messengers

    Full text link
    Are users who comment on a variety of matters more likely to achieve high influence than those who delve into one focused field? Do general Twitter hashtags, such as #lol, tend to be more popular than novel ones, such as #instantlyinlove? Questions like these demand a way to detect topics hidden behind messages associated with an individual or a hashtag, and a gauge of similarity among these topics. Here we develop such an approach to identify clusters of similar hashtags by detecting communities in the hashtag co-occurrence network. Then the topical diversity of a user's interests is quantified by the entropy of her hashtags across different topic clusters. A similar measure is applied to hashtags, based on co-occurring tags. We find that high topical diversity of early adopters or co-occurring tags implies high future popularity of hashtags. In contrast, low diversity helps an individual accumulate social influence. In short, diverse messages and focused messengers are more likely to gain impact.Comment: 9 pages, 7 figures, 6 table

    Connecting Dream Networks Across Cultures

    Full text link
    Many species dream, yet there remain many open research questions in the study of dreams. The symbolism of dreams and their interpretation is present in cultures throughout history. Analysis of online data sources for dream interpretation using network science leads to understanding symbolism in dreams and their associated meaning. In this study, we introduce dream interpretation networks for English, Chinese and Arabic that represent different cultures from various parts of the world. We analyze communities in these networks, finding that symbols within a community are semantically related. The central nodes in communities give insight about cultures and symbols in dreams. The community structure of different networks highlights cultural similarities and differences. Interconnections between different networks are also identified by translating symbols from different languages into English. Structural correlations across networks point out relationships between cultures. Similarities between network communities are also investigated by analysis of sentiment in symbol interpretations. We find that interpretations within a community tend to have similar sentiment. Furthermore, we cluster communities based on their sentiment, yielding three main categories of positive, negative, and neutral dream symbols.Comment: 6 pages, 3 figure

    Predicting Successful Memes using Network and Community Structure

    Full text link
    We investigate the predictability of successful memes using their early spreading patterns in the underlying social networks. We propose and analyze a comprehensive set of features and develop an accurate model to predict future popularity of a meme given its early spreading patterns. Our paper provides the first comprehensive comparison of existing predictive frameworks. We categorize our features into three groups: influence of early adopters, community concentration, and characteristics of adoption time series. We find that features based on community structure are the most powerful predictors of future success. We also find that early popularity of a meme is not a good predictor of its future popularity, contrary to common belief. Our methods outperform other approaches, particularly in the task of detecting very popular or unpopular memes.Comment: 10 pages, 6 figures, 2 tables. Proceedings of 8th AAAI Intl. Conf. on Weblogs and social media (ICWSM 2014
    • …
    corecore