242 research outputs found
Topicality and Social Impact: Diverse Messages but Focused Messengers
Are users who comment on a variety of matters more likely to achieve high
influence than those who delve into one focused field? Do general Twitter
hashtags, such as #lol, tend to be more popular than novel ones, such as
#instantlyinlove? Questions like these demand a way to detect topics hidden
behind messages associated with an individual or a hashtag, and a gauge of
similarity among these topics. Here we develop such an approach to identify
clusters of similar hashtags by detecting communities in the hashtag
co-occurrence network. Then the topical diversity of a user's interests is
quantified by the entropy of her hashtags across different topic clusters. A
similar measure is applied to hashtags, based on co-occurring tags. We find
that high topical diversity of early adopters or co-occurring tags implies high
future popularity of hashtags. In contrast, low diversity helps an individual
accumulate social influence. In short, diverse messages and focused messengers
are more likely to gain impact.Comment: 9 pages, 7 figures, 6 table
Connecting Dream Networks Across Cultures
Many species dream, yet there remain many open research questions in the
study of dreams. The symbolism of dreams and their interpretation is present in
cultures throughout history. Analysis of online data sources for dream
interpretation using network science leads to understanding symbolism in dreams
and their associated meaning. In this study, we introduce dream interpretation
networks for English, Chinese and Arabic that represent different cultures from
various parts of the world. We analyze communities in these networks, finding
that symbols within a community are semantically related. The central nodes in
communities give insight about cultures and symbols in dreams. The community
structure of different networks highlights cultural similarities and
differences. Interconnections between different networks are also identified by
translating symbols from different languages into English. Structural
correlations across networks point out relationships between cultures.
Similarities between network communities are also investigated by analysis of
sentiment in symbol interpretations. We find that interpretations within a
community tend to have similar sentiment. Furthermore, we cluster communities
based on their sentiment, yielding three main categories of positive, negative,
and neutral dream symbols.Comment: 6 pages, 3 figure
Predicting Successful Memes using Network and Community Structure
We investigate the predictability of successful memes using their early
spreading patterns in the underlying social networks. We propose and analyze a
comprehensive set of features and develop an accurate model to predict future
popularity of a meme given its early spreading patterns. Our paper provides the
first comprehensive comparison of existing predictive frameworks. We categorize
our features into three groups: influence of early adopters, community
concentration, and characteristics of adoption time series. We find that
features based on community structure are the most powerful predictors of
future success. We also find that early popularity of a meme is not a good
predictor of its future popularity, contrary to common belief. Our methods
outperform other approaches, particularly in the task of detecting very popular
or unpopular memes.Comment: 10 pages, 6 figures, 2 tables. Proceedings of 8th AAAI Intl. Conf. on
Weblogs and social media (ICWSM 2014
- …