5 research outputs found

    Bovine Colostrum Supplementation Modulates the Intestinal Microbial Community in Rabbits

    Get PDF
    Simple Summary Recently, research has focused on the modulation of the gut microbiota because of its central role in several digestive physiological functions and its involvement in the onset of not only gastrointestinal but also systemic diseases. Supplementing rabbit diets with nutraceutical substances could be a strategy to prevent dysbiosis, strengthen the immune system, and reduce mortality during the critical weaning period. Bovine colostrum (BC) is a by-product of the dairy industry and is very rich in compounds with several biological activities. Its use as an intestinal microbiota modulator in rabbits has never been investigated. This study evaluates the effects of diet supplementation with two different percentages of BC (2.5 and 5%) on luminal and mucosa-associated microbiota and its metabolism-associated pathways in the jejunum, caecum, and colon of rabbits. Although our results showed no effect of BC on microbiota biodiversity, there were significant differences between experimental groups in the microbial composition, mainly at the level of sub-dominant components depending on the dose of supplementation. The metabolism-associated pathways have also been affected, and particularly interesting are the results on the amino acids and lactose metabolism. Overall, findings suggest that BC could be used as a supplement in rabbit feed, although its effects on productive and reproductive performances, intestinal disease resistance, and economic aspects need to be further evaluated. BC is a nutraceutical that can modulate intestinal microbiota. This study investigates the effects of BC diet supplementation on luminal and mucosa-associated microbiota in the jejunum, caecum, and colon of rabbits. Twenty-one New Zealand White female rabbits were divided into three experimental groups (n = 7) receiving a commercial feed (CTRL group) and the same diet supplemented with 2.5% and 5% BC (2.5% BC and 5% BC groups, respectively), from 35 (weaning) to 90 days of age (slaughtering). At slaughter, the digestive tract was removed from each animal, then both content and mucosa-associated microbiota of jejunum, caecum, and colon were collected and analysed by Next Generation 16SrRNA Gene Sequencing. Significant differences were found in the microbial composition of the three groups (i.e., beta-diversity: p < 0.01), especially in the caecum and colon of the 2.5% BC group. The relative abundance analysis showed that the families most affected by the BC administration were Clostridia UCG-014, Barnesiellaceae, and Eggerthellaceae. A trend was also found for Lachnospiraceae, Akkermansiaceae, and Bacteroidaceae. A functional prediction has revealed several altered pathways in BC groups, with particular reference to amino acids and lactose metabolism. Firmicutes:Bacteroidetes ratio decreased in caecum luminal samples of the 2.5% BC group. These findings suggest that BC supplementation could positively affect the intestinal microbiota. However, further research is needed to establish the optimal administration dose

    Effect of Bovine Colostrum Dietary Supplementation on Rabbit Meat Quality

    No full text
    Bovine colostrum (BC) is rich in nutrients, antimicrobial, and antioxidant factors; for these reasons, it has been used as supplement in animal nutrition. However, its possible effects on meat quality have not been studied yet. Thirty-nine New Zealand White rabbits (n = 13/group) were assigned to three groups and fed until slaughter with a commercial standard diet, control group (C), and C supplemented with 2.5% and 5% (w/w) of BC (BC-2.5 and BC-5 groups, respectively). After slaughtering, the effect of dietary supplementation on microbiological and chemical characteristics of the rabbit loins was evaluated at 48 h postmortem (DO) and after 3 (D3) and 8 (D8) days of refrigerated storage. Results showed no difference in the microbiological parameters. In the supplemented groups, TBARS and TVBN values were lower and higher than in the C group, respectively (p < 0.01), and their fatty-acid profile was increased in SFA and decreased in MUFA (p < 0.05). In conclusion, research must continue to examine in depth the possible effects of BC byproduct reuse in animal nutrition on meat quality (e.g., antioxidant power, and physical and sensory characteristics)

    Goji Berry in the Diet of the Rabbit Buck: Effects on Semen Quality, Oxidative Status and Histological Features of the Reproductive Tract

    No full text
    Goji berry (GB) shows beneficial effects on human health, although its effects on the male rabbit have been little investigated. This study examines the impact of GB dietary supplementation on the semen traits, antioxidant capacity of seminal plasma, and histological features of the reproductive tract of rabbit buck. Eighteen rabbits were distributed into two dietary groups: one receiving a commercial feed (Control), and the other a feed supplemented with 1% of GB (Goji). After a nutritional adaptation period of 60 days, the animals were subjected to semen collection every 15 days. The semen traits, libido, antioxidant, and inflammatory parameters were collected and analyzed. The rabbits were sacrificed after 60 days, and tissues of the genital tract were analyzed. Compared to the Control group, the Goji group showed higher spermatozoa concentration, motility, and vitality (p p p < 0.05). Conversely, antioxidant and anti-inflammatory parameters were unaffected by the diet. These findings suggest that GB acts on the tissues of the reproductive tract positively influencing semen quality, although further studies are needed to understand the effect on oxidative stress

    Bovine Colostrum Supplementation in Rabbit Diet Modulates Gene Expression of Cytokines, Gut–Vascular Barrier, and Red-Ox-Related Molecules in the Gut Wall

    No full text
    Rabbits, pivotal in the EU as livestock, pets, and experimental animals, face bacterial infection challenges, prompting a quest for alternatives to curb antibiotic resistance. Bovine colostrum (BC), rich in immunoregulatory compounds, antimicrobial peptides, and growth factors, is explored for disease treatment and prevention. This study assesses BC diet supplementation effects on rabbit intestines, examining gene expression. Thirty female New Zealand White rabbits at weaning (35 days) were divided into three experimental groups: control (commercial feed), 2.5% BC, and 5% BC. The diets were administered until slaughtering (81 days). BC-upregulated genes in the jejunum included IL-8, TGF-β, and CTNN-β1 at 5% BC, while PLVAP at 2.5% BC. Antioxidant-related genes (SOD1, GSR) were downregulated in the cecum and colon with 2.5% BC. BC 5% promoted IL-8 in the jejunum, fostering inflammation and immune cell migration. It also induced genes regulating inflammatory responses (TGF-β) and gastrointestinal permeability (CTNN-β1). BC 5% enhanced antioxidant activity in the cecum and colon, but no significant impact on anti-myxo antibody production was observed. These results suggest that BC has significant effects on the rabbit gastrointestinal tract’s inflammatory and antioxidant response, but further research is required to fully understand its histological and physiological impact

    Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism

    No full text
    Many studies have supported a genetic etiology for autism. Here we report mutations in two X-linked genes encoding neuroligins NLGN3 and NLGN4 in siblings with autism-spectrum disorders. These mutations affect cell-adhesion molecules localized at the synapse and suggest that a defect of synaptogenesis may predispose to autism
    corecore