5,743 research outputs found

    Service composition in stochastic settings

    Get PDF
    With the growth of the Internet-of-Things and online Web services, more services with more capabilities are available to us. The ability to generate new, more useful services from existing ones has been the focus of much research for over a decade. The goal is, given a specification of the behavior of the target service, to build a controller, known as an orchestrator, that uses existing services to satisfy the requirements of the target service. The model of services and requirements used in most work is that of a finite state machine. This implies that the specification can either be satisfied or not, with no middle ground. This is a major drawback, since often an exact solution cannot be obtained. In this paper we study a simple stochastic model for service composition: we annotate the tar- get service with probabilities describing the likelihood of requesting each action in a state, and rewards for being able to execute actions. We show how to solve the resulting problem by solving a certain Markov Decision Process (MDP) derived from the service and requirement specifications. The solution to this MDP induces an orchestrator that coincides with the exact solution if a composition exists. Otherwise it provides an approximate solution that maximizes the expected sum of values of user requests that can be serviced. The model studied although simple shades light on composition in stochastic settings and indeed we discuss several possible extensions

    Learning Queuing Networks by Recurrent Neural Networks

    Full text link
    It is well known that building analytical performance models in practice is difficult because it requires a considerable degree of proficiency in the underlying mathematics. In this paper, we propose a machine-learning approach to derive performance models from data. We focus on queuing networks, and crucially exploit a deterministic approximation of their average dynamics in terms of a compact system of ordinary differential equations. We encode these equations into a recurrent neural network whose weights can be directly related to model parameters. This allows for an interpretable structure of the neural network, which can be trained from system measurements to yield a white-box parameterized model that can be used for prediction purposes such as what-if analyses and capacity planning. Using synthetic models as well as a real case study of a load-balancing system, we show the effectiveness of our technique in yielding models with high predictive power

    R&D for new silicon pixel sensors for the High Luminosity phase of the CMS experiment at LHC

    Get PDF
    The High Luminosity upgrade of the CERN LHC collider (HLLHC) demands a new high-radiation–tolerant solid-state pixel sensor capable of surviving fluencies up to a few 1016 neq/cm2 at ∼ 3 cm from the interaction point. To this extent the INFN ATLAS-CMS joint research activity, in collaboration with Fondazione Bruno Kessler (FBK), is aiming at the development of thin n-in-p–type pixel sensors for the HL-LHC. The R&D covers both planar and single-sided 3D columnar pixel devices made with the Si-Si Direct Wafer Bonding technique, which allows for the production of sensors with 100 μm and 130 μm active thickness for planar sensors, and 130 μm for 3D sensors, the thinnest ones ever produced so far. The first prototypes of hybrid modules, bump-bonded to the present CMS readout chip, have been tested on beam. The first results on their performance before and after irradiation are presented

    The INFN R&D: New pixel detector for the High Luminosity upgrade of the LHC

    Get PDF
    The High Luminosity upgrade of the CERN-LHC (HL-LHC) demands for a new high-radiation tolerant solid-state pixel sensor capable of surviving fluencies up to a few 1016 particles/cm2 at ∼3 cm from the interaction point. To this extent the INFN ATLAS-CMS joint research activity, in collaboration with Fondazione Bruno Kessler-FBK, is aiming at the development of thin n-in-p type pixel sensors for the HL-LHC. The R&D covers both planar and single-sided 3D columnar pixel devices made with the Si-Si Direct Wafer Bonding technique, which allows for the production of sensors with 100 μm and 130 μm active thickness for planar sensors, and 130 μm for 3D sensors, the thinnest ones ever produced so far. The first prototypes of hybrid modules bump-bonded to the present CMS and ATLAS readout chips have been tested in beam tests. The preliminary results on their performance before and after irradiation are presented

    Search for CP Violation in the decays D+ -> K_S pi+ and D+ -> K_S K+

    Full text link
    A high statistics sample of photo-produced charm from the FOCUS(E831) experiment at Fermilab has been used to search for direct CP violation in the decays D+->K_S pi+ and D+ -> K_S K+. We have measured the following asymmetry parameters relative to D+->K-pi+pi+: A_CP(K_S pi+) = (-1.6 +/- 1.5 +/- 0.9)%, A_CP(K_S K+) = (+6.9 +/- 6.0 +/- 1.5)% and A_CP(K_S K+) = (+7.1 +/- 6.1 +/- 1.2)% relative to D+->K_S pi+. The first errors quoted are statistical and the second are systematic. We also measure the relative branching ratios: \Gamma(D+->\bar{K0}pi+)/\Gamma(D+->K-pi+pi+) = (30.60 +/- 0.46 +/- 0.32)%, \Gamma(D+->\bar{K0}K+)/\Gamma(D+->K-pi+pi+) = (6.04 +/- 0.35 +/- 0.30)% and \Gamma(D+->\bar{K0}K+)/\Gamma(D+->\bar{K0}pi+) = (19.96 +/- 1.19 +/- 0.96)%.Comment: 4 pages, 3 figure

    A High Statistics Measurement of the Lambdac+ Lifetime

    Full text link
    A high statistics measurement of the Lambdac+ lifetime from the Fermilab fixed-target FOCUS photoproduction experiment is presented. We describe the analysis technique with particular attention to the determination of the systematic uncertainty. The measured value of 204.6 +/- 3.4 (stat.) +/- 2.5 (syst.) fs from 8034 +/- 122 Lambdac -> pKpi decays represents a significant improvement over the present world average.Comment: Submitted to Physical Review Letter

    The Target Silicon Detector for the FOCUS Spectrometer

    Full text link
    We describe a silicon microstrip detector interleaved with segments of a beryllium oxide target which was used in the FOCUS photoproduction experiment at Fermilab. The detector was designed to improve the vertex resolution and to enhance the reconstruction efficiency of short-lived charm particles.Comment: 18 pages, 14 figure
    • …
    corecore