1,900 research outputs found
GPU-based ultra-fast direct aperture optimization for online adaptive radiation therapy
Online adaptive radiation therapy (ART) has great promise to significantly
reduce normal tissue toxicity and/or improve tumor control through real-time
treatment adaptations based on the current patient anatomy. However, the major
technical obstacle for clinical realization of online ART, namely the inability
to achieve real-time efficiency in treatment re-planning, has yet to be solved.
To overcome this challenge, this paper presents our work on the implementation
of an intensity modulated radiation therapy (IMRT) direct aperture optimization
(DAO) algorithm on graphics processing unit (GPU) based on our previous work on
CPU. We formulate the DAO problem as a large-scale convex programming problem,
and use an exact method called column generation approach to deal with its
extremely large dimensionality on GPU. Five 9-field prostate and five 5-field
head-and-neck IMRT clinical cases with 5\times5 mm2 beamlet size and
2.5\times2.5\times2.5 mm3 voxel size were used to evaluate our algorithm on
GPU. It takes only 0.7~2.5 seconds for our implementation to generate optimal
treatment plans using 50 MLC apertures on an NVIDIA Tesla C1060 GPU card. Our
work has therefore solved a major problem in developing ultra-fast
(re-)planning technologies for online ART
Beam Orientation Optimization for Intensity Modulated Radiation Therapy using Adaptive l1 Minimization
Beam orientation optimization (BOO) is a key component in the process of IMRT
treatment planning. It determines to what degree one can achieve a good
treatment plan quality in the subsequent plan optimization process. In this
paper, we have developed a BOO algorithm via adaptive l_1 minimization.
Specifically, we introduce a sparsity energy function term into our model which
contains weighting factors for each beam angle adaptively adjusted during the
optimization process. Such an energy term favors small number of beam angles.
By optimizing a total energy function containing a dosimetric term and the
sparsity term, we are able to identify the unimportant beam angles and
gradually remove them without largely sacrificing the dosimetric objective. In
one typical prostate case, the convergence property of our algorithm, as well
as the how the beam angles are selected during the optimization process, is
demonstrated. Fluence map optimization (FMO) is then performed based on the
optimized beam angles. The resulted plan quality is presented and found to be
better than that obtained from unoptimized (equiangular) beam orientations. We
have further systematically validated our algorithm in the contexts of 5-9
coplanar beams for 5 prostate cases and 1 head and neck case. For each case,
the final FMO objective function value is used to compare the optimized beam
orientations and the equiangular ones. It is found that, our BOO algorithm can
lead to beam configurations which attain lower FMO objective function values
than corresponding equiangular cases, indicating the effectiveness of our BOO
algorithm.Comment: 19 pages, 2 tables, and 5 figure
A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation
Targeting at the development of an accurate and efficient dose calculation
engine for online adaptive radiotherapy, we have implemented a finite size
pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This
new GPU-based dose engine is built on our previously published ultrafast FSPB
computational framework [Gu et al. Phys. Med. Biol. 54 6287-97, 2009].
Dosimetric evaluations against Monte Carlo dose calculations are conducted on
10 IMRT treatment plans (5 head-and-neck cases and 5 lung cases). For all
cases, there is improvement with the 3D-density correction over the
conventional FSPB algorithm and for most cases the improvement is significant.
Regarding the efficiency, because of the appropriate arrangement of memory
access and the usage of GPU intrinsic functions, the dose calculation for an
IMRT plan can be accomplished well within 1 second (except for one case) with
this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB
algorithm without 3D-density correction, this new algorithm, though slightly
sacrificing the computational efficiency (~5-15% lower), has significantly
improved the dose calculation accuracy, making it more suitable for online IMRT
replanning
Foci of Schistosomiasis mekongi, Northern Cambodia: II. Distribution of infection and morbidity.
In the province of Kracheh, in Northern Cambodia, a baseline epidemiological survey on Schistosoma mekongi was conducted along the Mekong River between December 1994 and April 1995. The results of household surveys of highly affected villages of the East and the West bank of the river and of school surveys in 20 primary schools are presented. In household surveys 1396 people were examined. An overall prevalence of infection of 49.3% was detected by a single stool examination with the Kato-Katz technique. The overall intensity of infection was 118.2 eggs per gram of stool (epg). There was no difference between the population of the east and west shore of the Mekong for prevalence (P = 0.3) or intensity (P = 0.9) of infection. Severe morbidity was very frequent. Hepatomegaly of the left lobe was detected in 48.7% of the population. Splenomegaly was seen in 26.8% of the study participants. Visible diverted circulation was found in 7.2% of the population, and ascites in 0.1%. Significantly more hepatomegaly (P = 0.001), splenomegaly (P = 0. 001) and patients with diverted circulation (P = 0.001) were present on the west bank of the Mekong. The age group of 10-14 years was most affected. The prevalence of infection in this group was 71.8% and 71.9% in the population of the West and East of the Mekong, respectively. The intensity of infection was 172.4 and 194.2 epg on the West and the East bank, respectively. In the peak age group hepatomegaly reached a prevalence of 88.1% on the west and 82.8% on the east bank. In the 20 schools 2391 children aged 6-16 years were examined. The overall prevalence of infection was 40.0%, ranging from 7.7% to 72.9% per school. The overalls mean intensity of infection was 110.1 epg (range by school: 26.7-187.5 epg). Both prevalence (P = 0.001) and intensity of infection (P = 0.001) were significantly higher in schools on the east side of the Mekong. Hepatomegaly (55.2%), splenomegaly (23.6%), diverted circulation (4. 1%), ascites (0.5%), reported blood (26.7%) and mucus (24.3%) were very frequent. Hepatomegaly (P = 0.001), splenomegaly (P = 0.001), diverted circulation (P = 0.001) and blood in stool (P = 0.001) were significantly more frequent in schools of the east side of the Mekong. Boys suffered more frequently from splenomegaly (P = 0.05), ascites (P = 0.05) and bloody stools (P = 0.004) than girls. No difference in sex was found for the prevalence and intensity of infection and prevalence of hepatomegaly. On the school level prevalence and intensity of infection were highly associated (r = 0. 93, P = 0.0001). The intensity of infection was significantly associated only with the prevalence of hepatomegaly (r = 0.44, P = 0. 05) and blood in stool (r = 0.40, P = 0.02). This comprehensive epidemiological study documents for the first time the public health importance of schistosomiasis mekongi in the Province of Kracheh, Northern Cambodia and points at key epidemiological features of this schistosome species, in particular the high level of morbidity associated with infection
Fabrication-Adaptive Optimization, with an Application to Photonic Crystal Design
It is often the case that the computed optimal solution of an optimization
problem cannot be implemented directly, irrespective of data accuracy, due to
either (i) technological limitations (such as physical tolerances of machines
or processes), (ii) the deliberate simplification of a model to keep it
tractable (by ignoring certain types of constraints that pose computational
difficulties), and/or (iii) human factors (getting people to "do" the optimal
solution). Motivated by this observation, we present a modeling paradigm called
"fabrication-adaptive optimization" for treating issues of
implementation/fabrication. We develop computationally-focused theory and
algorithms, and we present computational results for incorporating
considerations of implementation/fabrication into constrained optimization
problems that arise in photonic crystal design. The fabrication-adaptive
optimization framework stems from the robust regularization of a function. When
the feasible region is not a normed space (as typically encountered in
application settings), the fabrication-adaptive optimization framework
typically yields a non-convex optimization problem. (In the special case where
the feasible region is a finite-dimensional normed space, we show that
fabrication-adaptive optimization can be re-cast as an instance of modern
robust optimization.) We study a variety of problems with special structures on
functions, feasible regions, and norms, for which computation is tractable, and
develop an algorithmic scheme for solving these problems in spite of the
challenges of non-convexity. We apply our methodology to compute
fabrication-adaptive designs of two-dimensional photonic crystals with a
variety of prescribed features
No bursts detected from FRB121102 in two 5-hour observing campaigns with the Robert C. Byrd Green Bank Telescope
Here, we report non-detection of radio bursts from Fast Radio Burst FRB
121102 during two 5-hour observation sessions on the Robert C. Byrd 100-m Green
Bank Telescope in West Virginia, USA, on December 11, 2017, and January 12,
2018. In addition, we report non-detection during an abutting 10-hour
observation with the Kunming 40-m telescope in China, which commenced UTC 10:00
January 12, 2018. These are among the longest published contiguous observations
of FRB 121102, and support the notion that FRB 121102 bursts are episodic.
These observations were part of a simultaneous optical and radio monitoring
campaign with the the Caltech HIgh- speed Multi-color CamERA (CHIMERA)
instrument on the Hale 5.1-m telescope.Comment: 1 table, Submitted to RN of AA
Impaired Cerebral Autoregulation Is Associated with Brain Atrophy and Worse Functional Status in Chronic Ischemic Stroke
Dynamic cerebral autoregulation (dCA) is impaired following stroke. However, the relationship between dCA, brain atrophy, and functional outcomes following stroke remains unclear. In this study, we aimed to determine whether impairment of dCA is associated with atrophy in specific regions or globally, thereby affecting daily functions in stroke patients. We performed a retrospective analysis of 33 subjects with chronic infarctions in the middle cerebral artery territory, and 109 age-matched non-stroke subjects. dCA was assessed via the phase relationship between arterial blood pressure and cerebral blood flow velocity. Brain tissue volumes were quantified from MRI. Functional status was assessed by gait speed, instrumental activities of daily living (IADL), modified Rankin Scale, and NIH Stroke Score. Compared to the non-stroke group, stroke subjects showed degraded dCA bilaterally, and showed gray matter atrophy in the frontal, parietal and temporal lobes ipsilateral to infarct. In stroke subjects, better dCA was associated with less temporal lobe gray matter atrophy on the infracted side ( = 0.029), faster gait speed ( = 0.018) and lower IADL score (0.002). Our results indicate that better dynamic cerebral perfusion regulation is associated with less atrophy and better long-term functional status in older adults with chronic ischemic infarctions
Orbit optimization for ASTROD-GW and its time delay interferometry with two arms using CGC ephemeris
ASTROD-GW (ASTROD [Astrodynamical Space Test of Relativity using Optical
Devices] optimized for Gravitation Wave detection) is an optimization of ASTROD
to focus on the goal of detection of gravitation waves. The detection
sensitivity is shifted 52 times toward larger wavelength compared to that of
LISA. The mission orbits of the 3 spacecraft forming a nearly equilateral
triangular array are chosen to be near the Sun-Earth Lagrange points L3, L4 and
L5. The 3 spacecraft range interferometrically with one another with arm length
about 260 million kilometers. In order to attain the requisite sensitivity for
ASTROD-GW, laser frequency noise must be suppressed below the secondary noises
such as the optical path noise, acceleration noise etc. For suppressing laser
frequency noise, we need to use time delay interferometry (TDI) to match the
two different optical paths (times of travel). Since planets and other
solar-system bodies perturb the orbits of ASTROD-GW spacecraft and affect the
(TDI), we simulate the time delay numerically using CGC 2.7 ephemeris
framework. To conform to the ASTROD-GW planning, we work out a set of 20-year
optimized mission orbits of ASTROD-GW spacecraft starting at June 21, 2028, and
calculate the residual optical path differences in the first and second
generation TDI for one-detector case. In our optimized mission orbits for 20
years, changes of arm length are less than 0.0003 AU; the relative Doppler
velocities are less than 3m/s. All the second generation TDI for one-detector
case satisfies the ASTROD-GW requirement.Comment: 17 pages, 7 figures, 1 tabl
Fast Monte Carlo Simulation for Patient-specific CT/CBCT Imaging Dose Calculation
Recently, X-ray imaging dose from computed tomography (CT) or cone beam CT
(CBCT) scans has become a serious concern. Patient-specific imaging dose
calculation has been proposed for the purpose of dose management. While Monte
Carlo (MC) dose calculation can be quite accurate for this purpose, it suffers
from low computational efficiency. In response to this problem, we have
successfully developed a MC dose calculation package, gCTD, on GPU architecture
under the NVIDIA CUDA platform for fast and accurate estimation of the x-ray
imaging dose received by a patient during a CT or CBCT scan. Techniques have
been developed particularly for the GPU architecture to achieve high
computational efficiency. Dose calculations using CBCT scanning geometry in a
homogeneous water phantom and a heterogeneous Zubal head phantom have shown
good agreement between gCTD and EGSnrc, indicating the accuracy of our code. In
terms of improved efficiency, it is found that gCTD attains a speed-up of ~400
times in the homogeneous water phantom and ~76.6 times in the Zubal phantom
compared to EGSnrc. As for absolute computation time, imaging dose calculation
for the Zubal phantom can be accomplished in ~17 sec with the average relative
standard deviation of 0.4%. Though our gCTD code has been developed and tested
in the context of CBCT scans, with simple modification of geometry it can be
used for assessing imaging dose in CT scans as well.Comment: 18 pages, 7 figures, and 1 tabl
- …
