7 research outputs found

    Structural, Optical, and Renewable Energy-Assisted Photocatalytic Dye Degradation Studies of ZnO, CuZnO, and CoZnO Nanostructures for Wastewater Treatment

    Get PDF
    Renewable energy can be harnessed from wastewater, whether from municipalities or industries, but this potential is often ignored. The world generates over 900 km3 of wastewater annually, which is typically treated through energy-consuming processes, despite its potential for energy production. Environmental pollution is a most important and serious issue for all and their adulterations to the aquatic system are very toxic in very low concentrations. Photocatalysis is a prominent approach to eliminating risky elements from the environment. The present study developed Zinc oxide (ZnO), Copper-doped Zinc oxide (CuZnO), and Cobalt-doped Zinc oxide (CoZnO) nanostructures (NSs) by facile hydrothermal route. The crystalline and structural stability of the synthesized nanostructures were evident from XRD and FESEM analysis. Metal, and oxygen bond and their interaction on the surfaces and their valency were explored from XPS spectra. Optical orientations and electron movements were revealed from UV-Visible analysis. After 100 min exposure time with 1 g of catalyst concentration 60%, 70%, and 89% of dye degraded, for dye concentration (5 mg/L to 50 mg/L), the huge variation observed (70% to 22%), (80% to 16%), (94% to 10%). The highest photodegradation rate (55%, 75%, 90%) was observed on pH~12 using ZnO, CoZnO, and CuZnO respectively. Photodegradation of methylene blue confirmed the largest surface area, rate of recombination, photo-excited charge carriers, photo-sensitivity range, and radical generations of ZnO, CuZnO, and CoZnO. The present study, therefore, suggested that CuZnO would be preferred to produce nanomaterials for industrial wastewater treatment like methylene

    Modified electrochemical sensor via supramolecular structural functionalized graphene oxide for ultra-sensitive detection of gallic acid

    No full text
    Gallic acid (GA) is a synthetic polyphenolic compound that has been increasing interest due to its diverse biological activities, including anti-inflammatory, antioxidant, anti-tumor, scavenging free radicals, protecting cardiovascular diseases, and hypertension-lowering properties. The precise and rapid determination of GA content holds significant importance for human health. In this study, we present a cost-effective and highly sensitive electrochemical sensor employing a nanocomposite material, diester calix[4]arene functionalized graphene oxide (DEC4/GO) for the ultrasensitive detection of GA. The characterization of the as-synthesized nanocomposite material was carried out using various techniques, such as Fourier-Transform infrared (FT-IR), Raman spectroscopy, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Tunneling Electron Microscopy (TEM), to ascertain its chemical composition, crystalline nature, phase purity, and structural morphology. The uniform deposition of DEC4/GO on the surface of a bare glass carbon electrode (GCE) was achieved via a drop casting method. In addition, the developed sensor DEC4/GO/GCE exhibits exceptional electrochemical response towards GA under optimized conditions, such as pH -7 phosphate-buffered saline (PBS) as a supporting electrolyte, a scan rate of 110 mV/s, and an applied potential window between −0.2 V and 0.8 V. The as-developed sensor demonstrated a wide linear dynamic range of 10–100 μM, resulting a brilliant linear calibration obtained for GA. Furthermore, the limit of detection (LOD) and quantification (LOQ) of the developed sensor were calculated as 0.01 and 0.03 μM respectively, lower than those reported for the other GA sensors. To validate the feasibility of our developed method, we analyzed the GA content in wine and green tea samples, achieving good recovery results. Overall, this study presents a promising electrochemical sensor platform for ultrasensitive detection of GA holding potential implications for various applications in health monitoring and food analysis

    Electrophoretic fabrication of ZnO/CuO and ZnO/CuO/rGO heterostructures-based thin films as environmental benign flexible electrode for supercapacitor

    No full text
    Sustainable fabrication of flexible hybrid supercapacitor electrodes is extensively investigated during the current era to solve global energy problems. Herein, we used a cost-effective and efficient electrophoretic deposition (EPD) approach to fabricate a hybrid supercapacitor electrode. ZnO/CuO and ZnO/CuO/rGO heterostructure were prepared by sol-gel synthesis route and were electrophoretically deposited on indium tin oxide (ITO) substrate as a thin uniform layer using 1 V for 20 min at 50 mV/s. ZnO/CuO and ZnO/CuO/rGO heterostructure coated ITOs were then employed as the working electrode in a three-electrode setup for supercapacitor measurements. The fabricated electrodes have been investigated by Galvanostatic charge-discharge (GCD), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) to study their charge storage properties. ZnO/CuO revealed a specific capacitance of 1945 F g−1 at 2 mV/s and 999 F g−1 at 5 A g−1. However, an increased specific capacitance of 2305 F g−1 was measured for ZnO/CuO/rGO heterostructure at 2 mV/s and 1235 F g−1 at 5 A g−1. The lower internal resistance was observed for ZnO/CuO/rGO heterostructure, indicating good conductivity of the electrode material. Thus, the overall results of the current study suggest that EPD-assisted ZnO/CuO/rGO heterostructure hybrid electrode possess a substantial potential for energy storage as a supercapacitor

    Facile fabrication of a free-standing magnesium oxide-graphene oxide functionalized membrane: a robust and efficient material for the removal of pollutants from aqueous matrices

    No full text
    Environmental pollution significantly challenges human health, ecosystems, and the planet’s sustainability. Widespread air, water, and soil contamination from various pollutants requires effective and sustainable solutions to reduce or eliminate pollution and its impacts. In this work, we designed novel magnesium oxide and graphene oxide (MgO@GO) composite free-standing membranes for nanofiltration. The membranes were characterized with the help of Fourier-transform infrared spectroscopy, X-ray diffraction, field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Further, free-standing MgO@GO composite membranes with different thicknesses were used to measure the water permeance. 410 nm-thick membranes showed high water permeance up to 480 ± 5 Lm−2 h−1bar−1. Further, the rejection efficiency of the membrane was measured against NaCl, CaCl2, Pb(NO3)2, CdCl2, and amoxicillin. The MgO@GO membrane (410 ± 10 nm) showed 100% rejection for amoxicillin and 99% for Pb(NO3)2, respectively. Additionally, the membranes were stable under acidic and neutral conditions for approximately ∼80 days and may used on an industrial scale to ensure water is clean and free from harmful substances

    A NiO-nanostructure-based electrochemical sensor functionalized with supramolecular structures for the ultra-sensitive detection of the endocrine disruptor bisphenol S in an aquatic environment

    No full text
    Herein, NiO nanoparticles (NPs) functionalized with a para-hexanitrocalix[6]arene derivative (p-HNC6/NiO) were synthesized by using a facile method and applied as a selective electrochemical sensor for the determination of bisphenol S (BPS) in real samples. Moreover, the functional interactions, phase purities, surface morphologies and elemental compositions of the synthesized p-HNC6/NiO NPs were investigated via advanced analytical tools, such as Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). Additionally, the synthesized p-HNC6/NiO NPs were cast on the surface of a bare glassy carbon electrode (GCE) via a drop casting method, which resulted in uniform deposition of p-HNC6/NiO/GCE over the surface of the GCE. Additionally, the developed p-HNC6/NiO/GCE sensor demonstrated an outstanding electrochemical response to BPS under optimized conditions, including a supporting electrolyte, a Briton-Robinson buffer electrolyte at pH 4, a scan rate of 110 mV s−1 and a potential window of between −0.2 and 1.0 V. The wide linear dynamic range was optimized to 0.8-70 μM to obtain a brilliant linear calibration curve for BPS. The limit of detection (LOD) and limit of quantification (LOQ) of the developed sensor were estimated to be 0.0059 and 0.019 μM, respectively, which are lower than those of reported sensors for BPS. The feasibility of the developed method was successfully assessed by analyzing the content of BPS in waste water samples, and good recoveries were achieved

    Synthesis of PVP-capped trimetallic nanoparticles and their efficient catalytic degradation of organic dyes

    No full text
    The study proposes a simple and efficient way to synthesize a heterogeneous catalyst that can be used for the degradation of organic dyes. A simple and fast chemical process was employed to synthesize Au: Ni: Co tri-metal nanohybrid structures, which were used as a catalyst to eliminate toxic organic dye contamination from wastewater in textile industries. The catalyst's performance was tested by degrading individual dyes as well as mixtures of dyes such as methylene blue (MB), methyl orange (MO), methyl red (MR), and Rose Bengal (RB) at various time intervals. The experimental results show the catalytic high degradation efficiency of different dyes achieving 72-90% rates in 29 s. Moreover, the material displayed excellent recycling stability, maintaining its degradation efficiency over four consecutive runs without any degradation in performance. Overall, the findings of the study suggest that these materials possess efficient catalytic properties, opening avenues toward their use in clean energy alternatives, environmental remediation, and other biological applications

    Facile Fabrication of a Free-Standing Magnesium Oxide-Graphene Oxide Functionalized Membrane: A Robust and Efficient Material for the Removal of Pollutants from Aqueous Matrices

    No full text
    Environmental pollution significantly challenges human health, ecosystems, and the planet’s sustainability. Widespread air, water, and soil contamination from various pollutants requires effective and sustainable solutions to reduce or eliminate pollution and its impacts. In this work, we designed novel magnesium oxide and graphene oxide (MgO@GO) composite free-standing membranes for nanofiltration. The membranes were characterized with the help of Fourier-transform infrared spectroscopy, X-ray diffraction, field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Further, free-standing MgO@GO composite membranes with different thicknesses were used to measure the water permeance. 410 nm-thick membranes showed high water permeance up to 480 ± 5 Lm−2 h−1 bar−1. Further, the rejection efficiency of the membrane was measured against NaCl, CaCl2, Pb(NO3)2, CdCl2, and amoxicillin. The MgO@GO membrane (410 ± 10 nm) showed 100% rejection for amoxicillin and 99% for Pb(NO3)2, respectively. Additionally, the membranes were stable under acidic and neutral conditions for approximately ∼80 days and may used on an industrial scale to ensure water is clean and free from harmful substances.</p
    corecore