63 research outputs found

    Integrated power scheme simulator for human-system integration studies

    Get PDF
    We present a simulator of a hydropower company’s view of its scheme, and its broader market and network context, which has been developed to evaluate advanced displays for control room operations. Although simplified, the simulator captures all the main aspects of scheme operations. The simulator allows controlled studies to be performed that test the effectiveness of current vs advanced display concepts under normal vs unexpected operating conditions that can be scripted into the simulator

    Principal surfaces from unsupervised kernel regression

    Full text link

    Transformation Equivariant Boltzmann Machines

    Get PDF
    Abstract. We develop a novel modeling framework for Boltzmann machines, augmenting each hidden unit with a latent transformation assignment variable which describes the selection of the transformed view of the canonical connection weights associated with the unit. This enables the inferences of the model to transform in response to transformed input data in a stable and predictable way, and avoids learning multiple features differing only with respect to the set of transformations. Extending prior work on translation equivariant (convolutional) models, we develop translation and rotation equivariant restricted Boltzmann machines (RBMs) and deep belief nets (DBNs), and demonstrate their effectiveness in learning frequently occurring statistical structure from artificial and natural images

    Gated Boltzmann Machine in Texture Modeling

    Full text link

    A Curve Shaped Description of Large Networks, with an Application to the Evaluation of Network Models

    Get PDF
    BACKGROUND: Understanding the structure of complex networks is a continuing challenge, which calls for novel approaches and models to capture their structure and reveal the mechanisms that shape the networks. Although various topological measures, such as degree distributions or clustering coefficients, have been proposed to characterize network structure from many different angles, a comprehensive and intuitive representation of large networks that allows quantitative analysis is still difficult to achieve. METHODOLOGY/PRINCIPAL FINDINGS: Here we propose a mesoscopic description of large networks which associates networks of different structures with a set of particular curves, using breadth-first search. After deriving the expressions of the curves of the random graphs and a small-world-like network, we found that the curves possess a number of network properties together, including the size of the giant component and the local clustering. Besides, the curve can also be used to evaluate the fit of network models to real-world networks. We describe a simple evaluation method based on the curve and apply it to the Drosophila melanogaster protein interaction network. The evaluation method effectively identifies which model better reproduces the topology of the real network among the given models and help infer the underlying growth mechanisms of the Drosophila network. CONCLUSIONS/SIGNIFICANCE: This curve-shaped description of large networks offers a wealth of possibilities to develop new approaches and applications including network characterization, comparison, classification, modeling and model evaluation, differing from using a large bag of topological measures

    Learning to Relate Images

    No full text
    • …
    corecore