8 research outputs found

    Excitotoxic neuronal cell death during an oligodendrocyte-directed CD8+ T cell attack in the CNS gray matter

    Full text link
    Background: Neural-antigen reactive cytotoxic CD8+ T cells contribute to neuronal dysfunction and degeneration in a variety of inflammatory CNS disorders. Facing excess numbers of target cells, CNS-invading CD8+ T cells cause neuronal cell death either via confined release of cytotoxic effector molecules towards neurons, or via spillover of cytotoxic effector molecules from 'leaky’ immunological synapses and non-confined release by CD8+ T cells themselves during serial and simultaneous killing of oligodendrocytes or astrocytes. Methods: Wild-type and T cell receptor transgenic CD8+ T cells were stimulated in vitro, their activation status was assessed by flow cytometry, and supernatant glutamate levels were determined using an enzymatic assay. Expression regulation of molecules involved in vesicular glutamate release was examined by quantitative real-time PCR, and mechanisms of non-vesicular glutamate release were studied by pharmacological blocking experiments. The impact of CD8+ T cell-mediated glutamate liberation on neuronal viability was studied in acute brain slice preparations. Results: Following T cell receptor stimulation, CD8+ T cells acquire the molecular repertoire for vesicular glutamate release: (i) they upregulate expression of glutaminase required to generate glutamate via deamination of glutamine and (ii) they upregulate expression of vesicular proton-ATPase and vesicular glutamate transporters required for filling of vesicles with glutamate. Subsequently, CD8+ T cells release glutamate in a strictly stimulus-dependent manner. Upon repetitive T cell receptor stimulation, CD25high CD8+ T effector cells exhibit higher estimated single cell glutamate release rates than CD25low CD8+ T memory cells. Moreover, glutamate liberation by oligodendrocyte-reactive CD25high CD8+ T effector cells is capable of eliciting collateral excitotoxic cell death of neurons (despite glutamate re-uptake by glia cells and neurons) in intact CNS gray matter. Conclusion: Glutamate release may represent a crucial effector pathway of neural-antigen reactive CD8+ T cells, contributing to excitotoxicity in CNS inflammation.<br

    CD4+ CD25+ FoxP3+ regulatory T cells suppress cytotoxicity of CD8+ effector T cells: implications for their capacity to limit inflammatory central nervous system damage at the parenchymal level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CD4<sup>+ </sup>CD25<sup>+ </sup>forkhead box P3 (FoxP3)<sup>+ </sup>regulatory T cells (T reg cells) are known to suppress adaptive immune responses, key control tolerance and autoimmunity.</p> <p>Methods</p> <p>We challenged the role of CD4<sup>+ </sup>T reg cells in suppressing established CD8<sup>+ </sup>T effector cell responses by using the OT-I/II system <it>in vitro </it>and an OT-I-mediated, oligodendrocyte directed <it>ex vivo </it>model (ODC-OVA model).</p> <p>Results</p> <p>CD4<sup>+ </sup>T reg cells dampened cytotoxicity of an ongoing CD8<sup>+ </sup>T effector cell attack <it>in vitro </it>and within intact central nervous system tissue <it>ex vivo</it>. However, their suppressive effect was limited by the strength of the antigen signal delivered to the CD8<sup>+ </sup>T effector cells and the ratio of regulatory to effector T cells. CD8<sup>+ </sup>T effector cell suppression required T cell receptor-mediated activation together with costimulation of CD4<sup>+ </sup>T reg cells, but following activation, suppression did not require restimulation and was antigen non-specific.</p> <p>Conclusions</p> <p>Our results suggest that CD4<sup>+ </sup>T reg cells are capable of suppressing CD8<sup>+ </sup>T effector cell responses at the parenchymal site, that is, limiting parenchymal damage in autoimmune central nervous system inflammation.</p

    A β-Lactam Antibiotic Dampens Excitotoxic Inflammatory CNS Damage in a Mouse Model of Multiple Sclerosis

    Get PDF
    In multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), impairment of glial “Excitatory Amino Acid Transporters” (EAATs) together with an excess glutamate-release by invading immune cells causes excitotoxic damage of the central nervous system (CNS). In order to identify pathways to dampen excitotoxic inflammatory CNS damage, we assessed the effects of a β-lactam antibiotic, ceftriaxone, reported to enhance expression of glial EAAT2, in “Myelin Oligodendrocyte Glycoprotein” (MOG)-induced EAE. Ceftriaxone profoundly ameliorated the clinical course of murine MOG-induced EAE both under preventive and therapeutic regimens. However, ceftriaxone had impact neither on EAAT2 protein expression levels in several brain areas, nor on the radioactive glutamate uptake capacity in a mixed primary glial cell-culture and the glutamate-induced uptake currents in a mammalian cell line mediated by EAAT2. Moreover, the clinical effect of ceftriaxone was preserved in the presence of the EAAT2-specific transport inhibitor, dihydrokainate, while dihydrokainate alone caused an aggravated EAE course. This demonstrates the need for sufficient glial glutamate uptake upon an excitotoxic autoimmune inflammatory challenge of the CNS and a molecular target of ceftriaxone other than the glutamate transporter. Ceftriaxone treatment indirectly hampered T cell proliferation and proinflammatory INFγ and IL17 secretion through modulation of myelin-antigen presentation by antigen-presenting cells (APCs) e.g. dendritic cells (DCs) and reduced T cell migration into the CNS in vivo. Taken together, we demonstrate, that a β-lactam antibiotic attenuates disease course and severity in a model of autoimmune CNS inflammation. The mechanisms are reduction of T cell activation by modulation of cellular antigen-presentation and impairment of antigen-specific T cell migration into the CNS rather than or modulation of central glutamate homeostasis

    Increased Intrathecal B and Plasma Cells in Patients With Anti-IgLON5 Disease:A Case Series

    Full text link
    Background and Objectives: Despite detection of autoantibodies, anti-IgLON5 disease was historically considered a tau-associated neurodegenerative disease, with limited treatment options and detrimental consequences for the patients. Observations in increasing case numbers hint toward underlying inflammatory mechanisms that, early detection provided, open a valuable window of opportunity for therapeutic intervention. We aimed to further substantiate this view by studying the CSF of patients with anti-IgLON5. Methods: We identified 11 patients with anti-IgLON5 from our database and compared clinical, MRI, and CSF findings with a cohort of 20 patients with progressive supranuclear palsy (PSP) (as a noninflammatory tauopathy) and 22 patients with functional neurologic disorder. Results: Patients with anti-IgLON5 show inflammatory changes in routine CSF analysis, an increase in B-lymphocyte frequency, and the presence of plasma cells in comparison to the PSP-control group and functional neurologic disease controls. Patients with intrathecal plasma cells showed a clinical response to rituximab. Discussion: Our findings indicate the importance of inflammatory mechanisms, in particular in early and acute anti-IgLON5 cases, which may support the use of immune-suppressive treatments in these cases. The main limitation of the study is the small number of cases due to the rarity of the disease

    Investigating charge-up and fragmentation dynamics of oxygen molecules after interaction with strong X-ray free-electron laser pulses

    No full text
    During the last decade, X-ray free-electron lasers (XFELs) have enabled the study of light–matter interaction under extreme conditions. Atoms which are subject to XFEL radiation are charged by a complex interplay of (several subsequent) photoionization events and electronic decay processes within a few femtoseconds. The interaction with molecules is even more intriguing, since intricate nuclear dynamics occur as the molecules start to dissociate during the charge-up process. Here, we demonstrate that by analyzing photoelectron angular emission distributions and kinetic energy release of charge states of ionic molecular fragments, we can obtain a detailed understanding of the charge-up and fragmentation dynamics. Our novel approach allows for gathering such information without the need of complex ab initio modeling. As an example, we provide a detailed view on the processes happening on a femtosecond time scale in oxygen molecules exposed to intense XFEL pulses
    corecore