124 research outputs found

    Fatigue Life of Welded High-Strength Steels under Gaussian Loads

    Get PDF
    Within the scope of the investigation of welded high-strength steels for application in crane structures, a Gaussian-like test spectrum is derived from an analysis of recorded load time histories. In addition to stress-controlled fatigue tests under constant amplitude loading, the test spectrum is used for the experimental investigation of MAG-welded butt joints and tubular sample components under variable amplitude loading. A linear damage accumulation using Palmgren-Miner-Elementary is conservative for a damage sum of D = 0.5. Application of the theoretical damage sum Dth = 1 results in a closer approximation of the Gaßner-curve. For further improvement of this approximation, a rotation of the calculated Gaßner-curve, i.e. a variable damage sum, is suggested for both butt joints and sample components

    Fatigue life assessment of thin-walled welded joints under non-proportional load-time histories by the shear stress rate integral approach

    Get PDF
    Fatigue life tests under constant and variable amplitude loadings were performed on the tube-tube thin-walled welded specimens made of magnesium (AZ31 and AZ61) alloys. The tests included pure axial, pure torsional and combined in-phase and out-of-phase loadings with the load ratio "R ",?"R "? ? ?1. For the tests with variable amplitude loads a Gaußdistributed loading spectrum with LS ? 5?104 cycles was used. Since magnesium welds show a fatigue life reduction under out-of-phase loads, a stress-based method, which takes this behavior into account, is proposed. The out-of-phase loading results in rotating shear stress vectors in the section planes, which are not orthogonal to the surface. This fact is used in order to provide an out-of-phase measure of the load. This measure is computed as an area covered by the shear stress vectors in all planes over a certain time interval, its computation involves the shear stress and the shear stress rate vectors in the individual planes. Fatigue life evaluation for the variable amplitudes loadings is performed using the Palmgren-Miner linear damage accumulation, whereas the total damage of every cycle is split up into two components: the amplitude component and the out-of-phase component. In order to compute the two components a modification of the rainflow counting method, which keeps track of the time intervals, where the cycles occur, must be used. The proposed method also takes into account different slopes of the pure axial and the pure torsional Wöhler-line by means of a Wöhler-line interpolation for combined loadings.&nbsp

    DArT markers tightly linked with the Rfc1 gene controlling restoration of male fertility in the CMS-C system in cultivated rye (Secale cereale L.)

    Get PDF
    The Rfc1 gene controls restoration of male fertility in rye (Secale cereale L.) with sterility-inducing cytoplasm CMS-C. Two populations of recombinant inbred lines (RIL) were used in this study to identify DArT markers located on the 4RL chromosome, in the close vicinity of the Rfc1 gene. In the population developed from the 541×2020LM intercross, numerous markers tightly linked with the restorer gene were identified. This group contained 91 DArT markers and three SCARs additionally analyzed in the study. All these markers were mapped in the distance not exceeding 6 cM from the gene of interest. In the second mapping population (541×Ot1-3 intercross), only 9 DArT markers located closely to the Rfc1 gene were identified. Five of these DArT markers were polymorphic in both populations

    Deriving a continuous fatigue life curve from LCF to VHCF

    No full text
    Fatigue testing is known to be time consuming and expensive. Therefore, it should be the main target of fatigue research to accelerate the derivation of fatigue properties. Depending on the required properties, strain- or load-controlled fatigue tests have to be performed. Carrying out load-controlled fatigue tests is necessary to derive the influence of mean stresses and notches on the fatigue strength and fatigue life of different materials and joining technologies. In the case of material samples, increasing test frequencies could be a proper way to accelerate the fatigue testing, as long as the increased test frequencies have no influence on the resulting fatigue life. In the case of strain-controlled fatigue tests, it is not possible to increase the test frequencies in order to accelerate the fatigue tests. Therefore, the Incremental Step Test, which allows the derivation of the cyclic stress-strain curve with only one test, was introduced. Due to the cyclic material behaviour of aluminium alloys, which has caused an on-going discussion, regarding the course of the strain life curve, over several years, it is, in contrast to sheet steel alloys, not possible to use the Incremental Step Test and approaches based on its results to estimate the strain life curve. In order to derive a fatigue life curve from the Low Cycle Fatigue (LCF) regime, across the High Cycle Fatigue (HCF) regime and up to the Very High Cycle Fatigue (VHCF) regime, a combined method using strain- and load- controlled fatigue tests will be discussed. This continuous fatigue life curve for aluminium wrought alloys, based on the evolution of the elastic-plastic material behaviour as well as on the results of high frequency testing up to the VHCF regime, will be presented
    corecore