49 research outputs found

    Silicon surface passivation by transparent conductive zinc oxide

    Get PDF
    Surface passivation is essential for high-efficiency crystalline silicon (c-Si) solar cells. Despite the common use of transparent conductive oxides (TCOs) in the field of solar cells, obtaining surface passivation by TCOs has thus far proven to be particularly challenging. In this work, we demonstrate outstanding passivation of c-Si surfaces by highly transparent conductive ZnO films prepared by atomic layer deposition. Effective surface recombination velocities as low as 4.8 cm/s and 11 cm/s are obtained on 3 Ω cm n- and p-type (100) c-Si, respectively. The high levels of surface passivation are achieved by a novel approach by using (i) an ultrathin SiO2 interface layer between ZnO and c-Si, (ii) a sacrificial Al2O3 capping layer on top of the ZnO film during forming gas annealing, and (iii) the extrinsic doping of the ZnO film by Al, B, or H. A combination of isotope labeling, secondary-ion mass spectrometry, and thermal effusion measurements showed that the sacrificial Al2O3 capping layer prevents the effusion of hydrogen from the crystalline ZnO and the underlying Si/SiO2 interface during annealing, which is critical in achieving surface passivation. After annealing, the Al2O3 capping layer can be removed from the ZnO film without impairing the high levels of surface passivation. The surface passivation levels increase with increased doping levels in ZnO, which can be attributed to field-effect passivation by a reduction in the surface hole concentration. The ZnO films of this work are suitable as a transparent conductor, an anti-reflection coating, and a surface passivation layer, which makes them particularly promising for simplifications in future solar cell manufacturing

    Infrared Optical Properties: Hydrogen Bonding and Stability

    No full text
    FTIR spectroscopy is a versatile and non-destructive optical characterization method for many materials, including a-Si:H and nc-Si:H, and structural material properties can be derived with relative ease. The ratio of the FTIR absorption in the hydrogen-silicon stretching modes at 2090 and 2000 cm-1was correlated early in the history of a- Si:H solar cells to light-induced degradation. However, the stretching modes were predominantly attributed to the number of hydrogen atoms bonded to a silicon atom and only recently a more adequate model based on the a-Si:H nanostructure has been established, which accounts for the influence that vacancies and voids have on the material properties. Hydrogenated amorphous silicon stands out from other semiconductors by great tunability in a wide deposition parameter space. This allows for the synthesis of different layers with unique properties, and the IR absorptance spectra have proven to be useful as a tool to select the right materials for the right application: • For the archetypical application as a PV absorber layer, a-Si:H material is optimized for high mass density, low defect density, and a low microstructure factor. The combination of a moderately narrow bandgap with minimized light-induced degradation yields high-efficiency devices [10, 51, 83-87]. • Narrow-bandgap a-Si:H can be used as bottom-cell absorber in multi-junction solar cells, yielding high currents [14]. Alloying with Ge reduces the bandgap further. • Wide-bandgap a-Si:H can be used as top-cell absorber, yielding high voltages [14, 88-93]. Alloying with C or O widens the bandgap further. • Few nanometer thick a-Si:H layers are optimized for the surface passivation of crystalline silicon in heterojunction solar cells, in which case not only low microstructure material performs well, but also more porous a-Si:H can be suitable [16]. • Stress-controlled a-Si:H is required to grow thick a-Si:H for detector applications [94]. • For optical applications, a-Si:H can be used in waveguides [34, 35] and is also useful for programmable applications due to the tunability of the complex optical response [28, 32]. For the latter application, a-Si:H with a somewhat elevated microstructure factor seems to be preferred to realize a larger difference between two switchable values of the refractive index, owing to the more pronounced Staebler-Wronski effect in such a-Si:H material in comparison to the type of a-Si:H that is typically preferred as a PV absorber layer. • Porous a-Si:H can serve as solid matrix or reservoir to embed other materials such as lithium for battery applications [95]. When a-Si:H is utilized in each of these applications, the particular nanostructure, hydrogen content, and the way hydrogen is configured in the material all impact the final material and device functionality.</p

    The native and metastable defects and their joint density of states in hydrogenated amorphous silicon obtained from the improved dual beam photoconductivity method

    No full text
    In this study, undoped hydrogenated amorphous silicon (a-Si:H) thin films deposited under moderate dilution ratios of silane by radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) have been investigated using steady-state photoconductivity and improved dual beam photoconductivity (DBP) methods to identify changes in multiple gap states in annealed and light-soaked states. Four different gap states were identified in annealed state named as A, B, C, and X states. The peak energy positions of these Gaussian distributions are consistent with those recently identified by Fourier transform photocurrent spectroscopy (FTPS). After in situ light soaking, their density increases with different rates as peak energy positions and half-widths remain unaffected. The electron-occupied A and B states located below the dark Fermi level and their density and ratios in the annealed and light-soaked states correlate well with those defects detected by time-domain pulsed electron paramagnetic resonance (EPR) experiments. The A, B, and X states located closer to the middle of the bandgap anneal out at room temperature in dark and define the "fast"states. However, the C states show no sign of room temperature annealing such that they must define the "slow"states in undoped a-Si:H. The results found in this study indicate that the anisotropic disordered network is a more appropriate model than previously proposed defect models based on the continuous random network to define the nanostructure of undoped a-Si:H, where multiple defects, D0 and non-D0 defects, can be identified by using the improved DBP method. Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Photovoltaic Materials and Device

    Silicon surface passivation by transparent conductive zinc oxide

    No full text
    Surface passivation is essential for high-efficiency crystalline silicon (c-Si) solar cells. Despite the common use of transparent conductive oxides (TCOs) in the field of solar cells, obtaining surface passivation by TCOs has thus far proven to be particularly challenging. In this work, we demonstrate outstanding passivation of c-Si surfaces by highly transparent conductive ZnO films prepared by atomic layer deposition. Effective surface recombination velocities as low as 4.8 cm/s and 11 cm/s are obtained on 3 Ω cm n- and p-type (100) c-Si, respectively. The high levels of surface passivation are achieved by a novel approach by using (i) an ultrathin SiO2 interface layer between ZnO and c-Si, (ii) a sacrificial Al2O3 capping layer on top of the ZnO film during forming gas annealing, and (iii) the extrinsic doping of the ZnO film by Al, B, or H. A combination of isotope labeling, secondary-ion mass spectrometry, and thermal effusion measurements showed that the sacrificial Al2O3 capping layer prevents the effusion of hydrogen from the crystalline ZnO and the underlying Si/SiO2 interface during annealing, which is critical in achieving surface passivation. After annealing, the Al2O3 capping layer can be removed from the ZnO film without impairing the high levels of surface passivation. The surface passivation levels increase with increased doping levels in ZnO, which can be attributed to field-effect passivation by a reduction in the surface hole concentration. The ZnO films of this work are suitable as a transparent conductor, an anti-reflection coating, and a surface passivation layer, which makes them particularly promising for simplifications in future solar cell manufacturing

    Status and prospects for atomic layer Deposited metal oxide thin films in passivating contacts for c-Si photovoltaics

    No full text
    In the field of photovoltaics, atomic layer deposition (ALD) is mostly known for its success in preparing Al2O3-based surface passivation layers for c-Si homojunction cells. In the last years, many novel types of c-Si heterojunctions have appeared, referred to as passivating contacts. In these concepts, metal oxide thin films are used for surface passivation, carrier selectivity and as transparent conductive oxide. This leads to the question whether the success of ALD for homojunctions can be translated into this new field as well. Therefore, this work provides an overview of these new concepts, and highlights both the current role and prospects of ALD in this field

    Self-aligned local contact opening and n+ diffusion by single-step laser doping from POx/Al2O3 passivation stacks

    Get PDF
    Laser doping is a promising route to realise industrially compatible processing of local contacts for high- efficiency solar cells, especially when the same film acts as both dopant source and passivation layer. In this work we demonstrate simultaneous local contact opening and n+laser doping of silicon from positively charged POx/Al2O3 thin-film stacks, which also provide outstanding passivation of n-type silicon surfaces. Local n+doped regions with sheet resistance ranging from 35 to ~540 Ω/□ are formed using single nanosecond laser pulses with varying fluence. ECV profiling shows net n-type doping in all cases, confirmed by SIMS profiling to be due to phosphorus from the POx layer. J0 of metallised laser-doped regions is consistent with values achieved for state- of-the-art furnace diffusions with similar sheet resistance, confirming that laser-induced recombination-active defects are avoided. A minimum J0 of 540 fA cm− 2 is obtained for metallised laser-doped regions formed from POx/Al2O3 passivation stacks having J0 of 2.5 fA cm− 2. The combination of outstanding passivation of uncontacted n-type regions offered by POx/Al2O3, with self-aligned formation of locally-diffused contact openings via single-step laser processing, opens up exciting possibilities for simplified fabrication of high-efficiency cell structures

    Infrared optical properties: Hydrogen bonding and stability

    No full text
    FTIR spectroscopy is a versatile and non-destructive optical characterization method for many materials, including a-Si:H and nc-Si:H, and structural material properties can be derived with relative ease. The ratio of the FTIR absorption in the hydrogen-silicon stretching modes at 2090 and 2000 cm-1was correlated early in the history of a- Si:H solar cells to light-induced degradation. However, the stretching modes were predominantly attributed to the number of hydrogen atoms bonded to a silicon atom and only recently a more adequate model based on the a-Si:H nanostructure has been established, which accounts for the influence that vacancies and voids have on the material properties. Hydrogenated amorphous silicon stands out from other semiconductors by great tunability in a wide deposition parameter space. This allows for the synthesis of different layers with unique properties, and the IR absorptance spectra have proven to be useful as a tool to select the right materials for the right application: • For the archetypical application as a PV absorber layer, a-Si:H material is optimized for high mass density, low defect density, and a low microstructure factor. The combination of a moderately narrow bandgap with minimized light-induced degradation yields high-efficiency devices [10, 51, 83-87]. • Narrow-bandgap a-Si:H can be used as bottom-cell absorber in multi-junction solar cells, yielding high currents [14]. Alloying with Ge reduces the bandgap further. • Wide-bandgap a-Si:H can be used as top-cell absorber, yielding high voltages [14, 88-93]. Alloying with C or O widens the bandgap further. • Few nanometer thick a-Si:H layers are optimized for the surface passivation of crystalline silicon in heterojunction solar cells, in which case not only low microstructure material performs well, but also more porous a-Si:H can be suitable [16]. • Stress-controlled a-Si:H is required to grow thick a-Si:H for detector applications [94]. • For optical applications, a-Si:H can be used in waveguides [34, 35] and is also useful for programmable applications due to the tunability of the complex optical response [28, 32]. For the latter application, a-Si:H with a somewhat elevated microstructure factor seems to be preferred to realize a larger difference between two switchable values of the refractive index, owing to the more pronounced Staebler-Wronski effect in such a-Si:H material in comparison to the type of a-Si:H that is typically preferred as a PV absorber layer. • Porous a-Si:H can serve as solid matrix or reservoir to embed other materials such as lithium for battery applications [95]. When a-Si:H is utilized in each of these applications, the particular nanostructure, hydrogen content, and the way hydrogen is configured in the material all impact the final material and device functionality

    Atomic-layer deposited passivation schemes for c-Si solar cells

    No full text
    A review of recent developments in the field of passivation of c-Si surfaces is presented, with a particular focus on materials that can be prepared by atomic layer deposition (ALD). Besides Al2O3, various other novel passivation schemes have recently been developed, such as Ga2O3, Ta2O5, SiO2/Al2O3, HfO2/Al2O3 and TiO2, which altogether can passivate a wider variety of doped and textured Si surfaces. Moreover, they are interesting candidates in the emerging field of passivating contacts, for instance as novel tunnel oxides. In this field, ALD can offer some distinct advantages, such as a precise control in film thickness, composition and even area-selective deposition

    On the Accuracy of the Cox-Strack Equation and Method for Contact Resistivity Determination

    Get PDF
    The Cox-Strack method is commonly applied to assess the contact resistivity between a metal and a semiconductor since the 1960s, while the underlying assumptions have not yet been rigorously assessed. In this article, a combination of finite-element modeling and mathematical analysis is used to investigate the accuracy of the conventional Cox-Strack equation for generic metal-semiconductor junctions. A systematic error in the spreading resistance equation is quantified, and alternative, more accurate equations are presented. Furthermore, it is shown that commonly used experimental configurations can lead to highly overestimated contact resistivities. Guidelines are formulated for accurate extraction of the contact resistivity from the Cox-Strack measurements
    corecore