474 research outputs found

    A unique modulation system for two channel data transmission

    Get PDF
    A simple low cost system is reported for the telemetry of information from meteorological rocket payloads including parachute borne systems. It uses S- or L-band microwave links with low cost oscillator type transmitters. An extension of this system to transmit two channels of data simultaneously by standard time and frequency multiplexing techniques as a sampled pulse is described. One channel is represented by the pulse repetition rate while the other channel is represented by the instantaneous duty cycle of the pulse train

    Neutrino emission via the plasma process in a magnetized plasma

    Get PDF
    Neutrino emission via the plasma process using the vertex formalism for QED in a strongly magnetized plasma is considered. A new vertex function is introduced to include the axial vector part of the weak interaction. Our results are compared with previous calculations, and the effect of the axial vector coupling on neutrino emission is discussed. The contribution from the axial vector coupling can be of the same order as or greater than the vector vector coupling under certain plasma conditions.Comment: 20 pages, 3 figure

    Scattering and Diffraction in Magnetospheres of Fast Pulsars

    Get PDF
    We apply a theory of wave propagation through a turbulent medium to the scattering of radio waves in pulsar magnetospheres. We find that under conditions of strong density modulation the effects of magnetospheric scintillations in diffractive and refractive regimes may be observable. The most distinctive feature of the magnetospheric scintillations is their independence on frequency. Results based on diffractive scattering due to small scale inhomogeneities give a scattering angle that may be as large as 0.1 radians, and a typical decorrelation time of 10810^{-8} seconds. Refractive scattering due to large scale inhomogeneities is also possible, with a typical angle of 10310^{-3} radians and a correlation time of the order of 10410^{-4} seconds. Temporal variation in the plasma density may also result in a delay time of the order of 10410^{-4} seconds. The different scaling of the above quantities with frequency may allow one to distinguish the effects of propagation through a pulsar magnetosphere from the interstellar medium. In particular, we expect that the magnetospheric scintillations are relatively more important for nearby pulsars when observed at high frequencies.Comment: 19 pages, 1 Figur

    Circular Polarization Induced by Scintillation in a Magnetized Medium

    Get PDF
    A new theory is presented for the development of circular polarization as radio waves propagate through the turbulent, birefringent interstellar medium. The fourth order moments of the wavefield are calculated and it is shown that unpolarized incident radiation develops a nonzero variance in circular polarization. A magnetized turbulent medium causes the Stokes parameters to scintillate in a non-identical manner. A specific model for this effect is developed for the case of density fluctuations in a uniform magnetic field.Comment: 16 pages, 1 figure, Phys. Rev. E, accepte

    Radio Spectral Evolution of an X-ray Poor Impulsive Solar Flare: Implications for Plasma Heating and Electron Acceleration

    Full text link
    We present radio and X-ray observations of an impulsive solar flare that was moderately intense in microwaves, yet showed very meager EUV and X-ray emission. The flare occurred on 2001 Oct 24 and was well-observed at radio wavelengths by the Nobeyama Radioheliograph (NoRH), the Nobeyama Radio Polarimeters (NoRP), and by the Owens Valley Solar Array (OVSA). It was also observed in EUV and X-ray wavelength bands by the TRACE, GOES, and Yohkoh satellites. We find that the impulsive onset of the radio emission is progressively delayed with increasing frequency relative to the onset of hard X-ray emission. In contrast, the time of flux density maximum is progressively delayed with decreasing frequency. The decay phase is independent of radio frequency. The simple source morphology and the excellent spectral coverage at radio wavelengths allowed us to employ a nonlinear chi-squared minimization scheme to fit the time series of radio spectra to a source model that accounts for the observed radio emission in terms of gyrosynchrotron radiation from MeV-energy electrons in a relatively dense thermal plasma. We discuss plasma heating and electron acceleration in view of the parametric trends implied by the model fitting. We suggest that stochastic acceleration likely plays a role in accelerating the radio-emitting electrons.Comment: 22 pages, 10 figure

    Transport of Dirac quasiparticles in graphene: Hall and optical conductivities

    Full text link
    The analytical expressions for both diagonal and off-diagonal ac and dc conductivities of graphene placed in an external magnetic field are derived. These conductivities exhibit rather unusual behavior as functions of frequency, chemical potential and applied field which is caused by the fact that the quasiparticle excitations in graphene are Dirac-like. One of the most striking effects observed in graphene is the odd integer quantum Hall effect. We argue that it is caused by the anomalous properties of the Dirac quasiparticles from the lowest Landau level. Other quantities such as Hall angle and Nernst signal also exhibit rather unusual behavior, in particular when there is an excitonic gap in the spectrum of the Dirac quasiparticle excitations.Comment: 25 pages, RevTeX4, 8 EPS figures; final version published in PR

    Stresses in isostatic granular systems and emergence of force chains

    Full text link
    Progress is reported on several questions that bedevil understanding of granular systems: (i) are the stress equations elliptic, parabolic or hyperbolic? (ii) how can the often-observed force chains be predicted from a first-principles continuous theory? (iii) How to relate insight from isostatic systems to general packings? Explicit equations are derived for the stress components in two dimensions including the dependence on the local structure. The equations are shown to be hyperbolic and their general solutions, as well as the Green function, are found. It is shown that the solutions give rise to force chains and the explicit dependence of the force chains trajectories and magnitudes on the local geometry is predicted. Direct experimental tests of the predictions are proposed. Finally, a framework is proposed to relate the analysis to non-isostatic and more realistic granular assemblies.Comment: 4 pages, 2 figures, Corrected typos and clkearer text, submitted to Phys. Rev. Let

    Magnetic Photon Splitting: the S-Matrix Formulation in the Landau Representation

    Get PDF
    Calculations of reaction rates for the third-order QED process of photon splitting in strong magnetic fields traditionally have employed either the effective Lagrangian method or variants of Schwinger's proper-time technique. Recently, Mentzel, Berg and Wunner (1994) presented an alternative derivation via an S-matrix formulation in the Landau representation. Advantages of such a formulation include the ability to compute rates near pair resonances above pair threshold. This paper presents new developments of the Landau representation formalism as applied to photon splitting, providing significant advances beyond the work of Mentzel et al. by summing over the spin quantum numbers of the electron propagators, and analytically integrating over the component of momentum of the intermediate states that is parallel to field. The ensuing tractable expressions for the scattering amplitudes are satisfyingly compact, and of an appearance familiar to S-matrix theory applications. Such developments can facilitate numerical computations of splitting considerably both below and above pair threshold. Specializations to two regimes of interest are obtained, namely the limit of highly supercritical fields and the domain where photon energies are far inferior to that for the threshold of single-photon pair creation. In particular, for the first time the low-frequency amplitudes are simply expressed in terms of the Gamma function, its integral and its derivatives. In addition, the equivalence of the asymptotic forms in these two domains to extant results from effective Lagrangian/proper-time formulations is demonstrated.Comment: 19 pages, 3 figures, REVTeX; accepted for publication in Phys. Rev.

    Structure of pair winds from compact objects with application to emission from bare strange stars

    Get PDF
    We present the results of numerical simulations of stationary, spherically outflowing, electron-positron pair winds, with total luminosities in the range 10^{34}- 10^{42} ergs/s. In the concrete example described here, the wind injection source is a hot, bare, strange star, predicted to be a powerful source of electron-positron pairs created by the Coulomb barrier at the quark surface. We find that photons dominate in the emerging emission, and the emerging photon spectrum is rather hard and differs substantially from the thermal spectrum expected from a neutron star with the same luminosity. This might help distinguish the putative bare strange stars from neutron stars.Comment: 4 pages, 6 figures, 1 table, added references, to appear in the proceedings of the conference "Isolated Neutron Stars: from the Surface to the Interior", London, UK, 24-28 April 200

    Confirmation and Analysis of Circular Polarization from Sagittarius A*

    Full text link
    Recently Bower et al. (1999b) have reported the detection of circular polarization from the Galactic Center black hole candidate, Sagittarius A*. We provide an independent confirmation of this detection, and provide some analysis on the possible mechanisms.Comment: 14 pages, to appear in Astrophysical Journal Letter
    corecore