11 research outputs found

    Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization

    Get PDF
    We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here—which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole—circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100 K which shows 30 Hz linewidths.National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant EB-002804)National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant EB-001960)National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant EB-001035)National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant EB-002026)National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant EB-003151)National Science Foundation (U.S.). Graduate Research Fellowship Progra

    Resolution and Polarization Distribution in Cryogenic DNP/MAS Experiments

    Get PDF
    This contribution addresses four potential misconceptions associated with high-resolution dynamic nuclear polarization/magic angle spinning (DNP/MAS) experiments. First, spectral resolution is not generally compromised at the cryogenic temperatures at which DNP experiments are performed. As we demonstrate at a modest field of 9 T (380 MHz [superscript 1]H), 1 ppm linewidths are observed in DNP/MAS spectra of a membrane protein in its native lipid bilayer, and <0.4 ppm linewidths are reported in a crystalline peptide at 85 K. Second, we address the concerns about paramagnetic broadening in DNP/MAS spectra of proteins by demonstrating that the exogenous radical polarizing agents utilized for DNP are distributed in the sample in such a manner as to avoid paramagnetic broadening and thus maintain full spectral resolution. Third, the enhanced polarization is not localized around the polarizing agent, but rather is effectively and uniformly dispersed throughout the sample, even in the case of membrane proteins. Fourth, the distribution of polarization from the electron spins mediated via spin diffusion between [superscript 1]H–[superscript 1]H strongly dipolar coupled spins is so rapid that shorter magnetization recovery periods between signal averaging transients can be utilized in DNP/MAS experiments than in typical experiments performed at ambient temperature.National Institutes of Health (U.S.) (Grant EB002804)National Institutes of Health (U.S.) (Grant EB003151)National Institutes of Health (U.S.) (Grant EB002026)National Institutes of Health (U.S.) (Grant EB001965)National Institutes of Health (U.S.) (Grant EB004866)National Science Foundation (U.S.). Graduate Research Fellowship Progra

    DNP Enhanced Frequency-Selective TEDOR Experiments in Bacteriorhodopsin

    Get PDF
    We describe a new approach to multiple [superscript 13]C–[superscript 15]N distance measurements in uniformly labeled solids, frequency-selective (FS) TEDOR. The method shares features with FS-REDOR and ZF- and BASE-TEDOR, which also provide quantitative [superscript 15]N–[superscript 13]C spectral assignments and distance measurements in U-[[superscript 13]C,[superscript 15]N] samples. To demonstrate the validity of the FS-TEDOR sequence, we measured distances in [U-[superscript 13]C,15N]-asparagine which are in good agreement with other methods. In addition, we integrate high frequency dynamic nuclear polarization (DNP) into the experimental protocol and use FS-TEDOR to record a resolved correlation spectrum of the Arg-[superscript 13]Cγ–[superscript 15]Nε region in [U-[superscript 13]C,15N]-bacteriorhodopsin. We resolve six of the seven cross-peaks expected based on the primary sequence of this membrane protein.National Institute of Biomedical Imaging and Bioengineering (U.S.) (Grant Number EB-001960)National Institute of Biomedical Imaging and Bioengineering (U.S.) (Grant Number EB-002804)National Institute of Biomedical Imaging and Bioengineering (U.S.) (Grant Number EB-001035)National Institute of Biomedical Imaging and Bioengineering (U.S.) (Grant Number EB-002026

    Solvent-Free Dynamic Nuclear Polarization of Amorphous and Crystalline ortho-Terphenyl

    No full text
    Dynamic nuclear polarization (DNP) of amorphous and crystalline ortho-terphenyl (OTP) in the absence of glass forming agents is presented in order to gauge the feasibility of applying DNP to pharmaceutical solid-state nuclear magnetic resonance experiments and to study the effect of intermolecular structure, or lack thereof, on the DNP enhancement. By way of [superscript 1]H–[superscript 13]C cross-polarization, we obtained a DNP enhancement (ε) of 58 for 95% deuterated OTP in the amorphous state using the biradical bis-TEMPO terephthalate (bTtereph) and ε of 36 in the crystalline state. Measurements of the [superscript 1]H T[subscript 1] and electron paramagnetic resonance experiments showed the crystallization process led to phase separation of the polarization agent, creating an inhomogeneous distribution of radicals within the sample. Consequently, the effective radical concentration was decreased in the bulk OTP phase, and long-range [superscript 1]H–[superscript 1]H spin diffusion was the main polarization propagation mechanism. Preliminary DNP experiments with the glass-forming anti-inflammation drug, indomethacin, showed promising results, and further studies are underway to prepare DNP samples using pharmaceutical techniques.National Institutes of Health (U.S.) (Grant EB-002804)National Institutes of Health (U.S.) (Grant EB-002026)National Institutes of Health (U.S.) (Grant GM095843)Natural Sciences and Engineering Research Council of Canada (Postdoctoral Fellowship)German Science Foundation (Research Fellowship CO 802/1-1

    Synthesis of 4‑Substituted Phthalazin-1(2<i>H</i>)‑ones from 2‑Acylbenzoic Acids: Controlling Hydrazine in a Pharmaceutical Intermediate through PAT-Guided Process Development

    No full text
    A simple one-pot, two-step process for the conversion of 2-acylbenzoic acids to phthalazin-1­(2<i>H</i>)-ones was developed. A robust process was required that delivered the final isolated solid with consistently low levels of residual hydrazine, for further processing to the final drug substance. An in situ formed intermediate was critical to control reactivity and allowed for the controlled crystallization that prevented entrainment of hydrazine. Leveraging Process Analytical Technology (PAT), we investigated the reaction profile with in situ IR and Power Compensation Calorimetry (PCC) to aid development prior to a successful scale-up

    Solvent-Free Dynamic Nuclear Polarization of Amorphous and Crystalline <i>ortho</i>-Terphenyl

    No full text
    Dynamic nuclear polarization (DNP) of amorphous and crystalline <i>ortho</i>-terphenyl (OTP) in the absence of glass forming agents is presented in order to gauge the feasibility of applying DNP to pharmaceutical solid-state nuclear magnetic resonance experiments and to study the effect of intermolecular structure, or lack thereof, on the DNP enhancement. By way of <sup>1</sup>H–<sup>13</sup>C cross-polarization, we obtained a DNP enhancement (ε) of 58 for 95% deuterated OTP in the amorphous state using the biradical bis-TEMPO terephthalate (bTtereph) and ε of 36 in the crystalline state. Measurements of the <sup>1</sup>H <i>T</i><sub>1</sub> and electron paramagnetic resonance experiments showed the crystallization process led to phase separation of the polarization agent, creating an inhomogeneous distribution of radicals within the sample. Consequently, the effective radical concentration was decreased in the bulk OTP phase, and long-range <sup>1</sup>H–<sup>1</sup>H spin diffusion was the main polarization propagation mechanism. Preliminary DNP experiments with the glass-forming anti-inflammation drug, indomethacin, showed promising results, and further studies are underway to prepare DNP samples using pharmaceutical techniques
    corecore