19,994 research outputs found

    Magnetoresistive Effects in Ferromagnet-Superconductor Multilayers

    Full text link
    We consider a nanoscale system consisting of Manganite-ferromagnet and Cuprate-superconductor multilayers in a spin valve configuration. The magnetization of the bottom Manganite-ferromagnet is pinned by a Manganite-antiferromagnet. The magnetization of the top Manganite-ferromagnet is coupled to the bottom one via indirect exchange through the superconducting layers. We study the behavior of the critical temperature and the magnetoresistance as a function of an externally applied parallel magnetic field, when the number of Cuprate-superconductor layers are changed. There are two typical behaviors in the case of a few monolayers of the Cuprates: a) For small magnetic fields, the critical temperature and the magnetoresistance change abruptly when the flipping field of the top Manganite-ferromagnet is reached. b) For large magnetic fields, the multilayered system re-enters the zero-resistance (superconducting) state after having become resistive (normal).Comment: 3 pages, 3 figures. 2004 Magnetism and Magnetic Materials Conferenc

    Ripples in Tapped or Blown Powder

    Full text link
    We observe ripples forming on the surface of a granular powder in a container submitted from below to a series of brief and distinct shocks. After a few taps, the pattern turns out to be stable against any further shock of the same amplitude. We find experimentally that the characteristic wavelength of the pattern is proportional to the amplitude of the shocks. Starting from consideration involving Darcy's law for air flow through the porous granulate and avalanche properties, we build up a semi-quantitative model which fits satisfactorily the set of experimental observations as well as a couple of additional experiments.Comment: 7 pages, four postscript figures, submitted PRL 11/19/9

    Association of mid-infrared solar plages with Calcium K line emissions and magnetic structures

    Full text link
    Solar mid-IR observations in the 8-15 micrometer band continuum with moderate angular resolution (18 arcseconds) reveal the presence of bright structures surrounding sunspots. These plage-like features present good association with calcium CaII K1v plages and active region magnetograms. We describe a new optical setup with reflecting mirrors to produce solar images on the focal plane array of uncooled bolometers of a commercial camera preceded by germanium optics. First observations of a sunspot on September 11, 2006 show a mid-IR continuum plage exhibiting spatial distribution closely associated with CaII K1v line plage and magnetogram structures. The mid-IR continuum bright plage is about 140 K hotter than the neighboring photospheric regions, consistent with hot plasma confined by the magnetic spatial structures in and above the active regionComment: 5 pages, 4 figures. Accepted by PAS

    Two-species fermion mixtures with population imbalance

    Full text link
    We analyze the phase diagram of uniform superfluidity for two-species fermion mixtures from the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensation (BEC) limit as a function of the scattering parameter and population imbalance. We find at zero temperature that the phase diagram of population imbalance versus scattering parameter is asymmetric for unequal masses, having a larger stability region for uniform superfluidity when the lighter fermions are in excess. In addition, we find topological quantum phase transitions associated with the disappearance or appearance of momentum space regions of zero quasiparticle energies. Lastly, near the critical temperature, we derive the Ginzburg-Landau equation, and show that it describes a dilute mixture of composite bosons and unpaired fermions in the BEC limit.Comment: 4 pages with 3 figures, accepted version to PR

    Quantum phases of bosons in double-well optical lattices

    Full text link
    We study the superfluid to Mott insulator transition of bosons in a two-legged ladder optical lattice, of a type accessible in current experiments on double-well optical lattices. The zero-temperature phase diagram is mapped out, with a focus on its dependence upon interchain hopping and the tilt between double wells. We find that the unit-filling Mott phase exhibits a non-monotonic behavior as a function of the tilt parameter, producing a reentrant phase transition between Mott insulator and superfluid phases.Comment: 5 pages, 5 figure
    • …
    corecore