8 research outputs found
Recommended from our members
Sensitivity of South American tropical forests to an extreme climate anomaly
Abstract:
The tropical forest carbon sink is known to be drought sensitive, but it is unclear which forests are the most vulnerable to extreme events. Forests with hotter and drier baseline conditions may be protected by prior adaptation, or more vulnerable because they operate closer to physiological limits. Here we report that forests in drier South American climates experienced the greatest impacts of the 2015–2016 El Niño, indicating greater vulnerability to extreme temperatures and drought. The long-term, ground-measured tree-by-tree responses of 123 forest plots across tropical South America show that the biomass carbon sink ceased during the event with carbon balance becoming indistinguishable from zero (−0.02 ± 0.37 Mg C ha−1 per year). However, intact tropical South American forests overall were no more sensitive to the extreme 2015–2016 El Niño than to previous less intense events, remaining a key defence against climate change as long as they are protected
Recommended from our members
Sensitivity of South American tropical forests to an extreme climate anomaly
Funder: A Moore Foundation grant, Royal Society Global Challenges grant (Sensitivity of Tropical Forest Ecosystem Services to Climate Changes), CNPq grants (441282/2016-4, 403764/2012-2 and 558244/2009-2), FAPEAM grants 1600/2006, 465/2010 and PPFOR 147/2015, CNPq grants 473308/2009-6 and 558320/2009-0. European Research Council (ERC Advanced Grant 291585 - 'T-FORCES'), the Gordon and Betty Moore Foundation (#1656 'RAINFOR', and 'MonANPeru'), the European Union's Fifth, Sixth and Seventh Framework Programme (EVK2-CT-1999-00023 - 'CARBONSINK-LBA', 283080 - 'GEOCARBON', 282664 - 'AMAZALERT), the Natural Environment Research Council (NE/ D005590/1 - 'TROBIT', NE/F005806/1 - 'AMAZONICA', E/M0022021/1 - 'PPFOR'), several NERC Urgency and New Investigators Grants, the NERC/State of Sao Paulo Research Foundation (FAPESP) consortium grants 'BIO-RED' (NE/N012542/1), 'ECOFOR' (NE/K016431/1, 2012/51872-5, 2012/51509-8), 'ARBOLES' (NE/S011811/1, FAPESP 2018/15001-6), 'SEOSAW' (NE/P008755/1), 'SECO' (NE/T01279X/1), Brazilian National Research Council (PELD/CNPq 403710/2012-0), the Royal Society (University Research Fellowships and Global challenges Awards) (ICA/R1/180100 - 'FORAMA'), the National Geographic Society, US National Science Foundation (DEB 1754647) and Colombia's Colciencias. We thank the National Council for Science and Technology Development of Brazil (CNPq) for support to the Cerrado/Amazonia Transition Long-Term Ecology Project (PELD/441244/2016-5), the PPBio Phytogeography of Amazonia/Cerrado Transition Project (CNPq/PPBio/457602/2012-0), PELD-RAS (CNPq, Process 441659/2016-0), RESFLORA (Process 420254/2018-8), Synergize (Process 442354/2019-3), the Empresa Brasileira de Pesquisa Agropecuaria - Embrapa (SEG: 02.08.06.005.00), the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP (2012/51509-8 and 2012/51872-5), the Goias Research Foundation (FAPEG/PELD: 2017/10267000329) the EcoSpace Project (CNPq 459941/2014-3) and several PVE and Productivity Grants. We also thank the "Investissement d'Avenir" program (CEBA, ref. ANR-10LABX-25-01), the Sao Paulo Research Foundation (FAPESP 03/12595-7) and the Sustainable Landscapes Brazil Project (through Brazilian Agricultural Research Corporation (EMBRAPA), the US Forest Service, USAID, and the US Department of State) for supporting plot inventories in the Atlantic Forest sites in Sao Paulo, Brazil. L.E.O.C.A. was supported by CNPq (processes 305054/2016-3 and 442371/2019-5). We thank to the National Council for Technological and Scientific Development (CNPq) for the financial support of the PELD project (441244/2016-5, 441572/2020-0) and FAPEMAT (0346321/2021). NE/B503384/1, NE/N012542/1 - 'BIO-RED', ERC Advanced Grant 291585 - 'T-FORCES', NE/F005806/1 - 'AMAZONICA', NE/N004655/1 - 'TREMOR', NERC New Investigators Awards, the Gordon and Betty Moore Foundation ('RAINFOR', 'MonANPeru'), ERC Starter Grant 758873 -'TreeMort', EU Framework 6, a Royal Society University Research Fellowship, and a Leverhulme Trust Research Fellowship.AbstractThe tropical forest carbon sink is known to be drought sensitive, but it is unclear which forests are the most vulnerable to extreme events. Forests with hotter and drier baseline conditions may be protected by prior adaptation, or more vulnerable because they operate closer to physiological limits. Here we report that forests in drier South American climates experienced the greatest impacts of the 2015–2016 El Niño, indicating greater vulnerability to extreme temperatures and drought. The long-term, ground-measured tree-by-tree responses of 123 forest plots across tropical South America show that the biomass carbon sink ceased during the event with carbon balance becoming indistinguishable from zero (−0.02 ± 0.37 Mg C ha−1 per year). However, intact tropical South American forests overall were no more sensitive to the extreme 2015–2016 El Niño than to previous less intense events, remaining a key defence against climate change as long as they are protected.</jats:p