36 research outputs found

    Gluon- vs. Sea quark-Shadowing

    Get PDF
    We calculate the shadowing of sea quarks and gluons and show that the shadowing of gluons is {\it not} simply given by the sea quark shadowing, especially at small xx. The calculations are done in the lab frame approach by using the generalized vector meson dominance model. Here the virtual photon turns into a hadronic fluctuation long before the nucleus. The subsequent coherent interaction with more than one nucleon in the nucleus leads to the depletion σ(γ∗A)<Aσ(γ∗N)\sigma (\gamma^* A) < A\sigma (\gamma^* N) known as shadowing. A comparison of the shadowing of quarks to E665 data for 40Ca^{40}Ca and 207Pb^{207}Pb shows good agreement.Comment: 9 pages, 3 eps figure

    Screen-film mammographic density and breast cancer risk: a comparison of the volumetric standard mammogram form and the interactive threshold measurement methods.

    Get PDF
    BACKGROUND: Mammographic density is a strong risk factor for breast cancer, usually measured by an area-based threshold method that dichotomizes the breast area on a mammogram into dense and nondense regions. Volumetric methods of breast density measurement, such as the fully automated standard mammogram form (SMF) method that estimates the volume of dense and total breast tissue, may provide a more accurate density measurement and improve risk prediction. METHODS: In 2000-2003, a case-control study was conducted of 367 newly confirmed breast cancer cases and 661 age-matched breast cancer-free controls who underwent screen-film mammography at several centers in Toronto, Canada. Conditional logistic regression was used to estimate odds ratios of breast cancer associated with categories of mammographic density, measured with both the threshold and the SMF (version 2.2beta) methods, adjusting for breast cancer risk factors. RESULTS: Median percent density was higher in cases than in controls for the threshold method (31% versus 27%) but not for the SMF method. Higher correlations were observed between SMF and threshold measurements for breast volume/area (Spearman correlation coefficient = 0.95) than for percent density (0.68) or for absolute density (0.36). After adjustment for breast cancer risk factors, odds ratios of breast cancer in the highest compared with the lowest quintile of percent density were 2.19 (95% confidence interval, 1.28-3.72; P(t) <0.01) for the threshold method and 1.27 (95% confidence interval, 0.79-2.04; Pt = 0.32) for the SMF method. CONCLUSION: Threshold percent density is a stronger predictor of breast cancer risk than the SMF version 2.2beta method in digitized images

    Mammographic features associated with interval breast cancers in screening programs

    No full text
    Abstract Introduction Percent mammographic density (PMD) is associated with an increased risk of interval breast cancer in screening programs, as are younger age, pre-menopausal status, lower body mass index and hormone therapy. These factors are also associated with variations in PMD. We have examined whether these variables influence the relative frequency of interval and screen-detected breast cancer, independently or through their associations with PMD. We also examined the association of tumor size with PMD and dense and non-dense areas in screen-detected and interval breast cancers. Methods We used data from three case-control studies nested in screened populations. Interval breast cancer was defined as invasive breast cancer detected within 12 months of a negative mammogram. We used a computer-assisted method of measuring the dense and total areas of breast tissue in the first (baseline) mammogram taken at entry to screening programs and calculated the non-dense area and PMD. We compared these mammographic features, and other risk factors at baseline, in women with screen-detected (n?=?718) and interval breast cancer (n?=?125). Results In multi-variable analysis, the baseline characteristics of younger age, greater dense area and smaller non-dense mammographic area were significantly associated with interval breast cancer compared to screen-detected breast cancer. Compared to screen-detected breast cancers, interval cancers had a larger maximum tumor diameter within each mammographic measure. Conclusions Age and the dense and non-dense areas in the baseline mammogram were independently associated with interval breast cancers in screening programs. These results suggest that decreased detection of cancers caused by the area of dense tissue, and more rapid growth associated with a smaller non-dense area, may both contribute to risk of interval breast cancer. Tailoring screening to individual mammographic characteristics at baseline may reduce the number of interval cancers
    corecore