86 research outputs found

    Scaling and Crossover to Tricriticality in Polymer Solutions

    Full text link
    We propose a scaling description of phase separation of polymer solutions. The scaling incorporates three universal limiting regimes: the Ising limit asymptotically close to the critical point of phase separation, the "ideal-gas" limit for the pure-solvent phase, and the tricritical limit for the polymer-rich phase asymptotically close to the theta point. We have also developed a phenomenological crossover theory based on the near-tricritical-point Landau expansion renormalized by fluctuations. This theory validates the proposed scaled representation of experimental data and crossover to tricriticality.Comment: 4 pages, 3 figure

    Self-assembly of phosphate fluorosurfactants in carbon dioxide

    Get PDF
    Anionic phosphodiester surfactants, possessing either two fluorinated chains (F/F) or one hydrocarbon chain and one fluorinated chain (H/F), were synthesized and evaluated for solubility and self-assembly in liquid and supercritical carbon dioxide. Several surfactants, of both F/F and EUF types and having varied counterions, were found to be capable of solubilizing water-in-CO2 (W/C), via the formation of microemulsions, expanding upon the family of phosphate fluorosurfactants already found to stabilize W/C microemulsions. Small-angle neutron scattering was used to directly characterize the microemulsion particles at varied temperatures, pressures, and water loadings, revealing behavior consistent with previous results on W/C microemulsions

    Probing structural relaxation in complex fluids by critical fluctuations

    Full text link
    Complex fluids, such as polymer solutions and blends, colloids and gels, are of growing interest in fundamental and applied soft-condensed-matter science. A common feature of all such systems is the presence of a mesoscopic structural length scale intermediate between atomic and macroscopic scales. This mesoscopic structure of complex fluids is often fragile and sensitive to external perturbations. Complex fluids are frequently viscoelastic (showing a combination of viscous and elastic behaviour) with their dynamic response depending on the time and length scales. Recently, non-invasive methods to infer the rheological response of complex fluids have gained popularity through the technique of microrheology, where the diffusion of probe spheres in a viscoelastic fluid is monitored with the aid of light scattering or microscopy. Here we propose an alternative to traditional microrheology that does not require doping of probe particles in the fluid (which can sometimes drastically alter the molecular environment). Instead, our proposed method makes use of the phenomenon of "avoided crossing" between modes associated with the structural relaxation and critical fluctuations that are spontaneously generated in the system.Comment: 4 pages, 4 figure

    In Vivo Assessment of Cold Adaptation in Insect Larvae by Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy

    Get PDF
    Background Temperatures below the freezing point of water and the ensuing ice crystal formation pose serious challenges to cell structure and function. Consequently, species living in seasonally cold environments have evolved a multitude of strategies to reorganize their cellular architecture and metabolism, and the underlying mechanisms are crucial to our understanding of life. In multicellular organisms, and poikilotherm animals in particular, our knowledge about these processes is almost exclusively due to invasive studies, thereby limiting the range of conclusions that can be drawn about intact living systems. Methodology Given that non-destructive techniques like 1H Magnetic Resonance (MR) imaging and spectroscopy have proven useful for in vivo investigations of a wide range of biological systems, we aimed at evaluating their potential to observe cold adaptations in living insect larvae. Specifically, we chose two cold-hardy insect species that frequently serve as cryobiological model systems–the freeze-avoiding gall moth Epiblema scudderiana and the freeze-tolerant gall fly Eurosta solidaginis. Results In vivo MR images were acquired from autumn-collected larvae at temperatures between 0°C and about -70°C and at spatial resolutions down to 27 µm. These images revealed three-dimensional (3D) larval anatomy at a level of detail currently not in reach of other in vivo techniques. Furthermore, they allowed visualization of the 3D distribution of the remaining liquid water and of the endogenous cryoprotectants at subzero temperatures, and temperature-weighted images of these distributions could be derived. Finally, individual fat body cells and their nuclei could be identified in intact frozen Eurosta larvae. Conclusions These findings suggest that high resolution MR techniques provide for interesting methodological options in comparative cryobiological investigations, especially in vivo

    Universal aspects of macromolecules in polymer blends, solutions, and supercritical mixtures

    Get PDF
    We demonstrate that macromolecules in miscible polymer blends may behave as good, Theta, and poor polymeric solvents for each other. We construct a conceptual phase diagram, delineating the range of validity of the random-phase approximation, outside of which polymers contract or expand beyond their unperturbed dimensions, contrary to common assumptions. Remarkably, the correlation length for polymer blends, solutions, and supercritical mixtures collapses onto a master curve, reflecting universal behavior for macromolecules in polymeric and small-molecule Theta solvents

    Density fluctuations near the liquid-gas critical point of a confined fluid

    Get PDF
    We report the results of an experimental study of the effect of a dilute silica network on liquid-gas critical phenomena in carbon dioxide (CO2). Using small-angle neutron scattering, we measured the correlation length of the density fluctuations in bulk (xi(bulk)) and confined CO2 (xi(conf)) as a function of temperature and average fluid density. We find that quenched disorder induced by an aerogel suppresses density fluctuations: xi(conf) loses the Ising model divergence characteristic of xi(bulk) and does not exceed the size of pores in the homogeneous region

    Adsorption of supercritical CO2 in aerogels as studied by small-angle neutron scattering and neutron transmission techniques

    Get PDF
    Small-angle neutron scattering (SANS) has been used to study the adsorption behavior of supercritical carbon dioxide (CO2) in porous Vycor glass and silica aerogels. Measurements were performed along two isotherms (T=35 and 80 degrees C) as a function of pressure (P) ranging from atmospheric up to 25 MPa, which corresponds to the bulk fluid densities ranging from rho(CO2) approximately 0 to 0.9 gcm3. The intensity of scattering from CO2-saturated Vycor porous glass can be described by a two-phase model which suggests that CO2 does not adsorb on the pore walls and fills the pore space uniformly. In CO2-saturated aerogels an adsorbed phase is formed with a density substantially higher that of the bulk fluid, and neutron transmission data were used to monitor the excess adsorption at different pressures. The results indicate that adsorption of CO2 is significantly stronger in aerogels than in activated carbons, zeolites, and xerogels due to the extremely high porosity and optimum pore size of these materials. SANS data revealed the existence of a compressed adsorbed phase with the average density approximately 1.07 gcm3, close to the density corresponding to closely packed van der Waals volume of CO2. A three-phase model [W. L. Wu, Polymer 23, 1907 (1982)] was used to estimate the volume fraction phi3 of the adsorbed phase as a function of the fluid density, and gave phi3 approximately 0.78 in the maximum adsorption regime around rho(CO2) approximately 0.374 gcm3. The results presented in this work demonstrate the utility of SANS combined with the transmission measurements to study the adsorption of supercritical fluids in porous materials

    Universal behavior of polymers in blends, solutions, and supercritical mixtures and implications for the validity of the random phase approximation

    No full text
    Blending (or mixing) of macromolecules is widely used to tailor the properties of polymeric materials and small-angle neutron scattering (SANS) has provided detailed information at the molecular level on the ability of different polymer species to mix or segregate at various thermodynamic conditions. For two decades, SANS data have been analyzed via the de Gennes "random phase approximation" (RPA) [P.-G. de Gennes, Scaling Concepts in Polymer Physics, second ed., Cornell University Press, Ithaca, London, 1979], which is based on the assumption that the dimensions of polymer chains remain unchanged on mixing for all concentrations and temperatures. Here we investigate the effect of temperature and concentration on the dimensions of macromolecules in blends using SANS and high-concentration labeling methods and construct a generic phase diagram, which specifies the range of validity of the RPA. Using scaling arguments, we demonstrate a parallel between the structure-property relationships in blends and solutions of polymers in small molecule solvents and reveal the impact of the chain length of the polymeric solvent on the phase behavior of polymer blends. The results offer new insights into the universality of the thermodynamic properties and structure of macromolecules in polymeric, liquid and supercritical solvents. (C) 2003 Elsevier B.V. All rights reserved
    corecore