4 research outputs found

    Environmental surveillance and characterization of antibiotic resistant Staphylococcus aureus at coastal beaches and rivers on the Island of Hawai'i

    No full text
    Staphylococcus aureus are human facultative pathogenic bacteria and can be found as contaminants in the environment. The aim of our study was to determine whether methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) isolated from coastal beach and river waters, anchialine pools, sand, and wastewater on the island of HawaiModified Letter Turned Commai, HawaiModified Letter Turned Commai, are a potential health risk. Samples were collected from three regions on HawaiModified Letter Turned Commai Island from July to December 2020 during the COVID-19 pandemic and were characterized using whole-genome sequencing (WGS). From WGS data, multilocus sequence typing (MLST), SCCmec type, antimicrobial resistance genes, virulence factors, and plasmids were identified. Of the 361 samples, 98.1% were positive for Staphylococcus spp. and 7.2% were S. aureus positive (n = 26); nine MRSA and 27 MSSA strains were characterized; multiple isolates were chosen from the same sample in two sand and seven coastal beach water samples. The nine MRSA isolates were multi-drug resistant (6-9 genes) sequence type (ST) 8, clonal complex (CC) 8, SCCmec type IVa (USA300 clone), and were clonally related (0-16 SNP differences), and carried 16-19 virulence factors. The 27 MSSA isolates were grouped into eight CCs and 12 STs. Seventy-eight percent of the MSSA isolates carried 1-5 different antibiotic resistance genes and carried 5-19 virulence factors. We found S. aureus in coastal beach and river waters, anchialine pools, and sand at locations with limited human activity on the island of HawaiModified Letter Turned Commai. This may be a public health hazard

    Sentinel Surveillance System Implementation and Evaluation for SARS-CoV-2 Genomic Data, Washington, USA, 2020–2021

    No full text
    Genomic data provides useful information for public health practice, particularly when combined with epidemiologic data. However, sampling bias is a concern because inferences from nonrandom data can be misleading. In March 2021, the Washington State Department of Health, USA, partnered with submitting and sequencing laboratories to establish sentinel surveillance for SARS-CoV-2 genomic data. We analyzed available genomic and epidemiologic data during presentinel and sentinel periods to assess representativeness and timeliness of availability. Genomic data during the presentinel period was largely unrepresentative of all COVID-19 cases. Data available during the sentinel period improved representativeness for age, death from COVID-19, outbreak association, long-term care facility–affiliated status, and geographic coverage; timeliness of data availability and captured viral diversity also improved. Hospitalized cases were underrepresented, indicating a need to increase inpatient sampling. Our analysis emphasizes the need to understand and quantify sampling bias in phylogenetic studies and continue evaluation and improvement of public health surveillance systems

    Associations between SARS-CoV-2 variants and risk of COVID-19 hospitalization among confirmed cases in Washington State: a retrospective cohort study.

    No full text
    BACKGROUND: The COVID-19 pandemic is dominated by variant viruses; the resulting impact on disease severity remains unclear. Using a retrospective cohort study, we assessed the hospitalization risk following infection with seven SARS-CoV-2 variants. METHODS: Our study includes individuals with positive SARS-CoV-2 RT-PCR in the Washington Disease Reporting System with available viral genome data, from December 1, 2020 to January 14, 2022. The analysis was restricted to cases with specimens collected through sentinel surveillance. Using a Cox proportional hazards model with mixed effects, we estimated hazard ratios (HR) for hospitalization risk following infection with a variant, adjusting for age, sex, calendar week, and vaccination. FINDINGS: 58,848 cases were sequenced through sentinel surveillance, of which 1705 (2.9%) were hospitalized due to COVID-19. Higher hospitalization risk was found for infections with Gamma (HR 3.20, 95%CI 2.40-4.26), Beta (HR 2.85, 95%CI 1.56-5.23), Delta (HR 2.28 95%CI 1.56-3.34) or Alpha (HR 1.64, 95%CI 1.29-2.07) compared to infections with ancestral lineages; Omicron (HR 0.92, 95%CI 0.56-1.52) showed no significant difference in risk. Following Alpha, Gamma, or Delta infection, unvaccinated patients show higher hospitalization risk, while vaccinated patients show no significant difference in risk, both compared to unvaccinated, ancestral lineage cases. Hospitalization risk following Omicron infection is lower with vaccination. CONCLUSION: Infection with Alpha, Gamma, or Delta results in a higher hospitalization risk, with vaccination attenuating that risk. Our findings support hospital preparedness, vaccination, and genomic surveillance
    corecore