7 research outputs found

    Characterising activity and diet compositions for dementia prevention: protocol for the ACTIVate prospective longitudinal cohort study

    Get PDF
    Introduction Approximately 40% of late-life dementia may be prevented by addressing modifiable risk factors, including physical activity and diet. Yet, it is currently unknown how multiple lifestyle factors interact to influence cognition. The ACTIVate Study aims to (1) explore associations between 24-hour time-use and diet compositions with changes in cognition and brain function; and (2) identify duration of time-use behaviours and the dietary compositions to optimise cognition and brain function.Methods and analysis This 3-year prospective longitudinal cohort study will recruit 448 adults aged 60-70 years across Adelaide and Newcastle, Australia. Time-use data will be collected through wrist-worn activity monitors and the Multimedia Activity Recall for Children and Adults. Dietary intake will be assessed using the Australian Eating Survey food frequency questionnaire. The primary outcome will be cognitive function, assessed using the Addenbrooke's Cognitive Examination-III. Secondary outcomes include structural and functional brain measures using MRI, cerebral arterial pulse measured with diffuse optical tomography, neuroplasticity using simultaneous transcranial magnetic stimulation and electroencephalography, and electrophysiological markers of cognitive control using event-related potential and time frequency analyses. Compositional data analysis, testing for interactions between time point and compositions, will assess longitudinal associations between dependent (cognition, brain function) and independent (time-use and diet compositions) variables. Conclusions The ACTIVate Study will be the first to examine associations between time-use and diet compositions, cognition and brain function. Our findings will inform new avenues for multidomain interventions that may more effectively account for the co-dependence between activity and diet behaviours for dementia prevention. Ethics and dissemination Ethics approval has been obtained from the University of South Australia's Human Research Ethics committee (202639). Findings will be disseminated through peer-reviewed manuscripts, conference presentations, targeted media releases and community engagement events. Trial registration number >Australia New Zealand Clinical Trials Registry (ACTRN12619001659190).Ashleigh E Smith, Alexandra T Wade, Timothy Olds, Dorothea Dumuid, Michael J Breakspear, Kate Laver ... et al

    Acute aerobic exercise and neuroplasticity of the motor cortex: a systematic review

    No full text
    OBJECTIVES:To synthesise the existing literature investigating if acute aerobic exercise enhances the response to experimentally-induced neuroplasticity paradigms. METHODS:A systematic search of electronic databases Medline, PsycInfo and Embase was undertaken on 26 April 2018 and updated on 17 May 2019. Studies were included if they involved a bout of aerobic exercise; prescribed a bout of rest as a control condition; utilized a non-invasive brain stimulation paradigm to induce neuroplasticity; used TMS to assess neuroplasticity outcomes; participants were healthy 18-65year old males and females with no diagnosed neurological/psychological impairments. RESULTS:Eight papers (containing 12 experiments) met inclusion criteria. All studies utilized cycling or treadmill exercise as their exercise modality, and exercise intensity ranged from low intensity continuous exercise to high-intensity interval exercise. Four neuroplasticity paradigms were employed including paired associative stimulation (PAS) (n=3), continuous theta-burst stimulation (cTBS) (n=2), intermittent theta-burst stimulation (iTBS) (n=2) and transcranial direct current stimulation (n=1). Aerobic exercise enhanced neuroplastic responses (compared to rest) in seven of the 12 experiments. CONCLUSIONS:This review provides emerging evidence that acute aerobic exercise can enhance the response to experimentally-induced neuroplasticity paradigms. However, there remains great variability in the study design and reporting of effects in these studies and thus a more standardized approach is encouraged to better understand the relationship between acute aerobic exercise and neuroplasticity. Future studies should consider optimizing intensity, paradigms and duration of both exercise and neuroplasticity paradigms employed.Maddison L. Mellow, Mitchell R. Goldsworthy, Scott Coussens, Ashleigh E. Smit

    How are combinations of physical activity, sedentary behaviour and sleep related to cognitive function in older adults? A systematic review

    No full text
    The relationships between cognitive function and each of physical activity, sleep and sedentary behaviour in older adults are well documented. However, these three "time use" behaviours are co-dependent parts of the 24-hour day (spending time in one leaves less time for the others), and their best balance for cognitive function in older adults is still largely unknown. This systematic review summarises the existing evidence on the associations between combinations of two or more time-use behaviours and cognitive function in older adults. Embase, Pubmed, PsycInfo, Medline and Emcare databases were searched in March 2020 and updated in May 2021, returning a total of 25,289 papers for screening. A total of 23 studies were included in the synthesis, spanning >23,000 participants (mean age 71 years). Findings support previous evidence that spending more time in physical activity and limiting sedentary behaviour is broadly associated with better cognitive outcomes in older adults. Higher proportions of moderate-vigorous physical activity in the day were most frequently associated with better cognitive function. Some evidence suggests that certain types of sedentary behaviour may be positively associated with cognitive function, such as reading or computer use. Sleep duration appears to share an inverted U-shaped relationship with cognition, as too much or too little sleep is negatively associated with cognitive function. This review highlights considerable heterogeneity in methodological and statistical approaches, and encourages a more standardised, transparent approach to capturing important daily behaviours in older adults. Investigating all three time-use behaviours together against cognitive function using suitable statistical methodology is strongly recommended to further our understanding of optimal 24-hour time use for brain function in aging.Maddison L. Mellow, Alyson J. Crozier, Dorothea Dumuid, Alexandra T. Wade, Mitchell R. Goldsworthy, Jillian Dorrian, Ashleigh E. Smit

    ENSINO DE TÉCNICA DE COMUNICAÇÃO TERAPÊUTICA ENFERMEIRA-PACIENTE - PARTE I

    No full text

    Neuropeptides in Alzheimer’s Disease: An Update

    No full text

    Neurochemistry of Drug Abuse

    No full text
    corecore