13 research outputs found
Homeostatic regulation of the endoneurial microenvironment during development, aging and in response to trauma, disease and toxic insult
The endoneurial microenvironment, delimited by the endothelium of endoneurial vessels and a multi-layered ensheathing perineurium, is a specialized milieu intérieur within which axons, associated Schwann cells and other resident cells of peripheral nerves function. The endothelium and perineurium restricts as well as regulates exchange of material between the endoneurial microenvironment and the surrounding extracellular space and thus is more appropriately described as a blood–nerve interface (BNI) rather than a blood–nerve barrier (BNB). Input to and output from the endoneurial microenvironment occurs via blood–nerve exchange and convective endoneurial fluid flow driven by a proximo-distal hydrostatic pressure gradient. The independent regulation of the endothelial and perineurial components of the BNI during development, aging and in response to trauma is consistent with homeostatic regulation of the endoneurial microenvironment. Pathophysiological alterations of the endoneurium in experimental allergic neuritis (EAN), and diabetic and lead neuropathy are considered to be perturbations of endoneurial homeostasis. The interactions of Schwann cells, axons, macrophages, and mast cells via cell–cell and cell–matrix signaling regulate the permeability of this interface. A greater knowledge of the dynamic nature of tight junctions and the factors that induce and/or modulate these key elements of the BNI will increase our understanding of peripheral nerve disorders as well as stimulate the development of therapeutic strategies to treat these disorders
Lack of association between CYP1A1 polymorphism and Parkinson's disease in a Chinese population
Apart from very few families who have a direct cause from genetic mutation, causes of most Parkinson's disease (PD) remain unclear. Many allelic association studies on polymorphism of different candidate genes have been studied. Although these association studies do not imply a causal relationship, it does warrant further studies to elucidate the pathophysiologic significance. CYP1A1 polymorphisms have been reported to be associated with PD in a Japanese population sample. Since CYP1A1 transforms aromatic hydrocarbons into products that may be neurotoxic and perhaps lead to PD, we therefore undertook a study to look at the possible association of CYP1A1 polymorphism and PD in a Chinese population. Contrary to the Japanese result, we did not find any statistically significant difference between the PD group and the control group in our study with a bigger sample size
EFNS guidelines on management of restless legs syndrome and periodic limb movement disorder in sleep
In 2003, the EFNS Task Force was set up for putting forth guidelines for the management of the Restless Legs Syndrome (RLS) and the Periodic Limb Movement Disorder (PLMD). After determining the objectives for management and the search strategy for primary and secondary RLS and for PLMD, a review of the scientific literature up to 2004 was performed for the drug classes and interventions employed in treatment (drugs acting on the adrenoreceptor, antiepileptic drugs, benzodiazepines/hypnotics, dopaminergic agents, opioids, other treatments). Previous guidelines were consulted. All trials were analysed according to class of evidence, and recommendations formed according to the 2004 EFNS criteria for rating. Dopaminergic agents came out as having the best evidence for efficacy in primary RLS. Reported adverse events were usually mild and reversible; augmentation was a feature with dopaminergic agents. No controlled trials were available for RLS in children and for RLS during pregnancy. The following level A recommendations can be offered: for primary RLS, cabergoline, gabapentin, pergolide, ropinirole, levodopa and rotigotine by transdermal delivery (the latter two for short-term use) are effective in relieving the symptoms. Transdermal oestradiol is ineffective for PLMD