26 research outputs found
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
Comprehensive strategy for identifying extracellular vesicle surface proteins as biomarkers for chronic kidney disease
Chronic kidney disease (CKD) poses a significant health burden worldwide. Especially, obesity-induced chronic kidney disease (OCKD) is associated with a lack of accuracy in disease diagnostic methods. The identification of reliable biomarkers for the early diagnosis and monitoring of CKD and OCKD is crucial for improving patient outcomes. Extracellular vesicles (EVs) have emerged as potential biomarkers in the context of CKD. In this review, we focused on the role of EVs as potential biomarkers in CKD and OCKD and developed a comprehensive list of EV membrane proteins that could aid in the diagnosis and monitoring of the disease. To assemble our list, we employed a multi-step strategy. Initially, we conducted a thorough review of the literature on EV protein biomarkers in kidney diseases. Additionally, we explored papers investigating circulating proteins as biomarkers in kidney diseases. To further refine our list, we utilized the EV database Vesiclepedia.org to evaluate the qualifications of each identified protein. Furthermore, we consulted the Human Protein Atlas to assess the localization of these candidates, with a particular focus on membrane proteins. By integrating the information from the reviewed literature, Vesiclepedia.org, and the Human Protein Atlas, we compiled a comprehensive list of potential EV membrane protein biomarkers for CKD and OCKD. Overall, our review underscores the potential of EVs as biomarkers in the field of CKD research, providing a foundation for future studies aimed at improving CKD and OCKD diagnosis and treatment.</p
MRI-based quantification of renal fat in obese individuals using different image analysis approaches
Increased extracellular vesicles (EVs) related to T cell-mediated inflammation and vascular function in familial hypercholesterolemia
Background and aims: OxLDL modulates innate and adaptive immunity, and extracellular vesicles (EVs) released from both non-immune and immune cells are proposed key players in atherosclerosis development. In the present study, we aimed to investigate EVs expressing markers related to adaptive immunity-driven inflammation and endothelial activation/dysfunction in hypercholesterolemic patients. Methods: EVs were phenotyped in thirty patients with familial hypercholesterolemia (FH) and twenty-three healthy controls using the Extracellular Vesicle (EV) Array with antibodies targeting proteins expressed on B and T cells, and endothelial cells. Results: FH patients had a higher atherosclerotic burden, as determined by the mean carotid intima-media thickness (IMT) (0.64 ± 0.12 mm vs. 0.58 ± 0.07 mm; p = 0.033), higher oxLDL levels (p < 0.0001), and showed increased levels of EV-specific markers: CD9 (p = 0.017), CD63 (p = 0.045), CD81 (p = 0.003), Annexin V (p = 0.018), and EV markers related to adaptive/lymphocyte immunity: CD28 (p = 0.034), CD4 (p = 0.049), CD152 (p = 0.029), LFA-1 (p = 0.024), and endothelial function: CD62E (p = 0.032), CD144 (p = 0.018), tPA (p = 0.017), CD31 (p = 0.024). Linear regression revealed a positive relationship between carotid IMT and several of the increased markers observed within the FH group, including CD9 (β = 0.33; p = 0.022), CD63 (β = 0.35; p 225 = 0.026), CD28 (β = 0.37; p = 0.026), CD4 (β = 0.40; p = 0.025), CD152 (β = 0.41; p = 0.017), LFA-1 (β = 0.42; p = 0.014) and CD62E (β = 0.38; p = 0.024). Conclusion: EVs associated with adaptive immunity and endothelial dysfunction are elevated in FH patients, and several markers related to a higher atherosclerotic burden