5 research outputs found

    Design, Synthesis, Binding and Docking-Based 3D-QSAR Studies of 2-Pyridylbenzimidazoles—A New Family of High Affinity CB1 Cannabinoid Ligands

    No full text
    A series of novel 2-pyridylbenzimidazole derivatives was rationally designed and synthesized based on our previous studies on benzimidazole 14, a CB1 agonist used as a template for optimization. In the present series, 21 compounds displayed high affinities with Ki values in the nanomolar range. JM-39 (compound 39) was the most active of the series (KiCB1 = 0.53 nM), while compounds 31 and 44 exhibited similar affinities to WIN 55212-2. CoMFA analysis was performed based on the biological data obtained and resulted in a statistically significant CoMFA model with high predictive value (q2 = 0.710, r2 = 0.998, r2pred = 0.823)

    Design, synthesis, biological evaluation and binding mode modeling of benzimidazole derivatives targeting the cannabinoid receptor type 1

    No full text
    © 2015 Wiley-VCH Verlag GmbH & Co. KGaA. A series of N-acyl-2,5-dimethoxyphenyl-1H-benzimidazoles were designed based on a CoMFA model for cannabinoid receptor type 1 (CB1) ligands. Compounds were synthesized and radioligand binding affinity assays were performed. Eight novel benzimidazoles exhibited affinity for the CB1 receptor in the nanomolar range, and the most promising derivative compound 5 displayed a Ki value of 1.2 nM when compared to CP55,940. These results confirm our previously reported QSAR model on benzimidazole derivatives, providing new information for the development of small molecules with high CB1 affinity

    Synthesis, Docking, 3-D-Qsar, and Biological Assays of Novel Indole Derivatives Targeting Serotonin Transporter, Dopamine D2 Receptor, and Mao-A Enzyme: In the Pursuit for Potential Multitarget Directed Ligands

    No full text
    A series of 27 compounds of general structure 2,3-dihydro-benzo[1,4]oxazin-4-yl)-2-{4-[3-(1H-3indolyl)-propyl]-1-piperazinyl}-ethanamides, Series I: 7(a-o) and (2-{4-[3-(1H-3-indolyl)-propyl]-1-piperazinyl}-acetylamine)-N-(2-morfolin-4-yl-ethyl)-fluorinated benzamides Series II: 13(a-l) were synthesized and evaluated as novel multitarget ligands towards dopamine D-2 receptor, serotonin transporter (SERT), and monoamine oxidase-A (MAO-A) directed to the management of major depressive disorder (MDD). All the assayed compounds showed affinity for SERT in the nanomolar range, with five of them displaying Ki values from 5 to 10 nM. Compounds 7k, Ki = 5.63 +/- 0.82 nM, and 13c, Ki = 6.85 +/- 0.19 nM, showed the highest potencies. The affinities for D-2 ranged from micro to nanomolar, while MAO-A inhibition was more discrete. Nevertheless, compounds 7m and 7n showed affinities for the D-2 receptor in the nanomolar range (7n: Ki = 307 +/- 6 nM and 7m: Ki = 593 +/- 62 nM). Compound 7n was the only derivative displaying comparable affinities for SERT and D-2 receptor (D-2/SERT ratio = 3.6) and could be considered as a multitarget lead for further optimization. In addition, docking studies aimed to rationalize the molecular interactions and binding modes of the designed compounds in the most relevant protein targets were carried out. Furthermore, in order to obtain information on the structure-activity relationship of the synthesized series, a 3-D-QSAR CoMFA and CoMSIA study was conducted and validated internally and externally (q(2) = 0.625, 0.523 for CoMFA and CoMSIA and r(ncv)(2) = 0.967, 0.959 for CoMFA and CoMSIA, respectively).Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1170269 1170662 3180602 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT

    Evaluation of the Membrane Permeability (PAMPA and Skin) of Benzimidazoles with Potential Cannabinoid Activity and their Relation with the Biopharmaceutics Classification System (BCS)

    No full text
    The permeability of five benzimidazole derivates with potential cannabinoid activity was determined in two models of membranes, parallel artificial membrane permeability assay (PAMPA) and skin, in order to study the relationship of the physicochemical properties of the molecules and characteristics of the membranes with the permeability defined by the Biopharmaceutics Classification System. It was established that the PAMPA intestinal absorption method is a good predictor for classifying these molecules as very permeable, independent of their thermodynamic solubility, if and only if these have a Log Poct value <3.0. In contrast, transdermal permeability is conditioned on the solubility of the molecule so that it can only serve as a model for classifying the permeability of molecules that possess high solubility (class I: high solubility, high permeability; class III: high solubility, low permeability)
    corecore