4 research outputs found

    Pilot Dietary Intervention with Heat-Stabilized Rice Bran Modulates Stool Microbiota and Metabolites in Healthy Adults

    No full text
    Heat-stabilized rice bran (SRB) has been shown to regulate blood lipids and glucose, modulate gut mucosal immunity and inhibit colorectal cancer in animal and human studies. However, SRB’s effects on gut microbial composition and metabolism and the resulting implications for health remain largely unknown. A pilot, randomized-controlled trial was developed to investigate the effects of eating 30 g/day SRB on the stool microbiome and metabolome. Seven healthy participants consumed a study meal and snack daily for 28 days. The microbiome and metabolome were characterized using 454 pyrosequencing and gas chromatography-mass spectrometry (GC-MS) at baseline, two and four weeks post-intervention. Increases in eight operational taxonomic units (OTUs), including three from Bifidobacterium and Ruminococcus genera, were observed after two and four weeks of SRB consumption (p < 0.01). Branched chain fatty acids, secondary bile acids and eleven other putative microbial metabolites were significantly elevated in the SRB group after four weeks. The largest metabolite change was a rice bran component, indole-2-carboxylic acid, which showed a mean 12% increase with SRB consumption. These data support the feasibility of dietary SRB intervention in adults and support that SRB consumption can affect gut microbial metabolism. These findings warrant future investigations of larger cohorts evaluating SRB’s effects on intestinal health

    A Pilot Randomized Controlled Clinical Trial to Assess Tolerance and Efficacy of Navy Bean and Rice Bran Supplementation for Lowering Cholesterol in Children

    No full text
    Background: Navy beans and rice bran demonstrate efficacy to regulate serum cholesterol in hypercholesterolemic adults; however, the cardiovascular disease (CVD) protective properties of these foods in children are unknown and merit investigation. Objective: The objectives were to determine whether cooked navy bean powder (NBP) and/or heat-stabilized rice bran (RB) supplementation is tolerable, improves dietary fiber intake in children, and modulates lipid profiles. Methods: Children aged 8 to 13 years at risk for CVD due to abnormal lipids were recruited. Elevated cholesterol levels were defined as total cholesterol ≥180 mg/dL and high-density lipoprotein (HDL) <60 mg/dL; low-density lipoprotein (LDL) ≥100 mg/dL and HDL <60 mg/dL; or non-HDL >100 mg/dL and HDL <60 mg/dL. Participants completed a pilot 4-week, randomized controlled, 4-arm dietary intervention. They consumed study-provided muffins or a smoothie daily that included 0 g NBP or RB (control), 17.5 g NBP, 15 g RB, or a combination 9 g NBP + 8 g RB. Fasting blood was collected at baseline and week 4. Participants also completed 3-day food logs and gastrointestinal health questionnaires. Results: Thirty-eight children completed the trial (n = 9 control, n = 10 NBP, n = 9 RB, and n = 10 NBP + RB groups). Only 3 participants withdrew due to noncompliance of required food consumption. Participants in the intervention groups significantly increased intake of NBP and RB at week 4 (p≤.01). The NBP and NBP + RB groups increased total fiber intake from baseline to week 4 (p=.02 and p=<.01, respectively). HDL-cholesterol was higher in NBP-group participants compared to control at week 4 ( P = .02). Conclusion: Increasing NBP and/or RB intake is tolerable for children, and our findings suggest higher daily intakes are needed for a longer duration to induce favorable changes across multiple serum lipid parameters
    corecore