7 research outputs found

    Olfactory-locomotor information transits through the medial region of the OB.

    No full text
    <p>(A–D) Responses in a single ipsilateral RS neuron to 30 µA stimulation of the ON and OB. The schematic (inset) indicates the location of stimulating electrodes. Note that a synaptic response was elicited only following stimulation of the ON or the medial part of the OB. (E) Mean amplitude of 4 RS cells responses to 30 µA ON stimulation before (grey bar) and after local injection of AP5 and CNQX mixture in the central-medial OB (red bar) and lateral OB (green bar). * <i>p</i><0.05.</p

    The medial region of the OB projects to the PT.

    No full text
    <p>(A) Schematic dorsal view of the forebrain summarizing the efferent OB projections in the lamprey. Projections from OB regions other than the medial region are shown in green. (B) Anterograde labeling from the medial OB (red) shows fibers terminating in the PT (see picture to the right). (C, D) Retrograde labeling from the PT shows neuronal cell bodies in only one medial glomerulus in the OB (see picture to the right). (E, F) Retrograde labeling from the lateral pallium shows neurons associated with almost all glomeruli, except the medial. White scale bars in pictures represent 100 µm.</p

    Olfactory inputs are relayed via the PT and MLR.

    No full text
    <p>(A) Schematic illustration showing the experimental procedure where glutamate receptor antagonists were injected in different sites indicated by the arrows. (B) RS cell responses to ON stimulation are strongly decreased by the injection in the PT. (C) Injection in the MLR has a similar effect. (D) An injection in the DLR does not block the synaptic responses. (B, C, D) are from different preparations.</p

    Olfactory epithelium stimulation activates RS cells.

    No full text
    <p>(A) Illustration of the experimental procedure in an isolated olfactory epithelium-brain-spinal cord preparation. (B) Responses of RS cell to the application of L-arginine over the olfactory epithelium (Arg, 1 mM). (C) Response to bile acid–taurocholic acid (TCA, 1 µM). (D–E) Responses to male-secreted pheromones, 3-keto-petromyzonol sulfate (3KPZS, 10 µM), and 3-keto allocholic acid (3KACA, 10 µM), respectively. Arrows represent the onset of odor ejection. (B–E) are from different preparations.</p

    Schematic representation of the olfactory-locomotor circuitry in lampreys.

    No full text
    <p>Stimulation of the olfactory sensory neurons in the periphery activates neurons in the OB. There are two distinct projections from the OB, one from the lateral and another from the medial part. The lateral part projects to forebrain structures including the lateral pallium, the striatum with some fibers reaching down to habenula (grey arrows). The medial part is the relevant part for generating locomotor behavior. There is a direct projection from the medial part of the OB to the PT. From the PT, there is a projection to the MLR, known to play a crucial role in controlling locomotion in all vertebrate species. MLR neurons project to brainstem reticulospinal neurons, acting as command cells for locomotion. RS cells, in turn, project directly to spinal cord neurons that generate the basic muscle synergies responsible for propulsion during locomotion.</p

    Glutamate injection into the OB induces fictive locomotion.

    No full text
    <p>(A) Top trace: Intracellular recording of a RS cell. Note the large excitation induced by the injection of 3 mM glutamate in the ipsilateral OB. Bottom traces: Ventral root (VR) discharges on both sides. (B) Detail from the boxed area in (B) shows fictive locomotion characterized by alternating ipsilateral and contralateral ventral root activity (iVR and cVR, respectively). Note that the RS cell shows rhythmic oscillations in tune with the fictive locomotor pattern.</p

    Olfactory nerve stimulation activates RS cells.

    No full text
    <p>(A) Responses of RS cells following electrical stimulation of the ON with 5 or 15 µA (top versus bottom traces); single shocks or trains of stimulation (left versus right traces). Each trace is a mean of eight individual responses. (B) Calcium fluorescence imaging illustrates the ΔF/F response of identified RS cells to ON stimulation (20 µA –10 Hz). (a, c) ipsilateral. (b, d) contralateral. White scale bar in the photomicrograph represents 100 µm. (C) RS responses to ON electrical stimulation are reduced by glutamate antagonists perfused through the bath (50 µA stimulation, upper traces) (D) or injected onto the OB (50 µA stimulation, bottom traces).</p
    corecore