7 research outputs found

    Axisymmetric viscous gravity currents flowing over a porous medium

    Get PDF
    We study the axisymmetric propagation of a viscous gravity current over a deep porous medium into which it also drains. A model for the propagation and drainage of the current is developed and solved numerically in the case of constant input from a point source. In this case, a steady state is possible in which drainage balances the input, and we present analytical expressions for the resulting steady profile and radial extent. We demonstrate good agreement between our experiments, which use a bed of vertically aligned tubes as the porous medium, and the theoretically predicted evolution and steady state. However, analogous experiments using glass beads as the porous medium exhibit a variety of unexpected behaviours, including overshoot of the steady-state radius and subsequent retreat, thus highlighting the importance of the porous medium geometry and permeability structure in these systems.Comment: 11 pages, 6 figures, 1 tabl

    Particle-scale structure in frozen colloidal suspensions from small angle X-ray scattering

    Get PDF
    During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has mostly concentrated on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle-scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small angle X-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. X-ray scattering indicates that the particles in the high density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by any standard inter-particle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium or steady-state densification processes

    Diffusive Dynamics of Nanoparticles in Aqueous Dispersions

    Full text link
    The diffusive dynamics of 100 nm to 400 nm diameter polystyrene nanoparticles dispersed in water were studied using brightfield and fluorescence based differential dynamic microscopy (DDM) and compared to those obtained from dynamic light scattering. The relaxation times measured with brightfield and fluorescence DDM over a broad range of concentration of nanoparticles (10−6 ≤ φ ≤ 10−3) and scattering vectors (0.5 μm−1 < q < 10 μm−1) are in excellent agreement with each other and extrapolate quantitatively to those obtained from DLS measurements. The diffusion coefficients extracted from the q-dependent relaxation times using all three methods are independent of the nanoparticle concentration.We thank Prof. J. Rimer for the use of the DLS instrumentation. This publication is based on the work supported in part by award no. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST
    corecore