4 research outputs found

    Discovery of Chromane Propionic Acid Analogues as Selective Agonists of GPR120 with <i>in Vivo</i> Activity in Rodents

    No full text
    GPR120 (FFAR4) is a fatty acid sensing G protein coupled receptor (GPCR) that has been identified as a target for possible treatment of type 2 diabetes. A selective activator of GPR120 containing a chromane scaffold has been designed, synthesized, and evaluated <i>in vivo</i>. Results of these efforts suggest that chromane propionic acid <b>18</b> is a suitable tool molecule for further animal studies. Compound <b>18</b> is selective over the closely related target GPR40 (FFAR1), has a clean off-target profile, demonstrates suitable pharmacokinetic properties, and has been evaluated in wild-type/knockout GPR120 mouse oGTT studies

    Design and Synthesis of Novel, Selective GPR40 AgoPAMs

    No full text
    GPR40 is a G-protein-coupled receptor expressed primarily in pancreatic islets and intestinal L-cells that has been a target of significant recent therapeutic interest for type II diabetes. Activation of GPR40 by partial agonists elicits insulin secretion only in the presence of elevated blood glucose levels, minimizing the risk of hypoglycemia. GPR40 agoPAMs have shown superior efficacy to partial agonists as assessed in a glucose tolerability test (GTT). Herein, we report the discovery and optimization of a series of potent, selective GPR40 agoPAMs. Compound <b>24</b> demonstrated sustained glucose lowering in a chronic study of Goto Kakizaki rats, showing no signs of tachyphylaxis for this mechanism

    Structure–Activity Relationship of Novel and Selective Biaryl-Chroman GPR40 AgoPAMs

    No full text
    A series of biaryl chromans exhibiting potent and selective agonism for the GPR40 receptor with positive allosteric modulation of endogenous ligands (AgoPAM) were discovered as potential therapeutics for the treatment of type II diabetes. Optimization of physicochemical properties through modification of the pendant aryl rings resulted in the identification of compound <i>AP5</i>, which possesses an improved metabolic profile while demonstrating sustained glucose lowering

    Design, Synthesis, and Evaluation of Novel and Selective G‑protein Coupled Receptor 120 (GPR120) Spirocyclic Agonists

    No full text
    Type 2 diabetes mellitus (T2DM) is an ever increasing worldwide epidemic, and the identification of safe and effective insulin sensitizers, absent of weight gain, has been a long-standing goal of diabetes research. G-protein coupled receptor 120 (GPR120) has recently emerged as a potential therapeutic target for treating T2DM. Natural occurring, and more recently, synthetic agonists have been associated with insulin sensitizing, anti-inflammatory, and fat metabolism effects. Herein we describe the design, synthesis, and evaluation of a novel spirocyclic GPR120 agonist series, which culminated in the discovery of potent and selective agonist <b>14</b>. Furthermore, compound <b>14</b> was evaluated <i>in vivo</i> and demonstrated acute glucose lowering in an oral glucose tolerance test (oGTT), as well as improvements in homeostatic measurement assessment of insulin resistance (HOMA-IR; a surrogate marker for insulin sensitization) and an increase in glucose infusion rate (GIR) during a hyperinsulinemic euglycemic clamp in diet-induced obese (DIO) mice
    corecore