2,787 research outputs found

    Detection of Radio Emission from the Hyperactive L Dwarf 2MASS J13153094-2649513AB

    Full text link
    We report the detection of radio emission from the unusually active L5e + T7 binary 2MASS J13153094-2649513AB made with the Australian Telescope Compact Array. Observations at 5.5 GHz reveal an unresolved source with a continuum flux of 370+/-50 microJy, corresponding to a radio luminosity of L_rad = nuL_nu = (9+/-3)x10^23 erg/s and log10(L_rad/L_bol) = -5.44+/-0.22. No detection is made at 9.0 GHz to a 5 sigma limit of 290 microJy, consistent with a power law spectrum S_nu ~ nu^-a with a > 0.5. The emission is quiescent, with no evidence of variability or bursts over 3 hr of observation, and no measurable polarization (V/I < 34%). 2MASS J1315-2649AB is one of the most radio-luminous ultracool dwarfs detected in quiescent emission to date, comparable in strength to other cool sources detected in outburst. Its detection indicates no decline in radio flux through the mid-L dwarfs. It is unique among L dwarfs in having strong and persistent Halpha and radio emission, indicating the coexistence of a cool, neutral photosphere (low electron density) and a highly active chromosphere (high electron density and active heating). These traits, coupled with the system's mature age and substellar secondary, makes 2MASS J1315-2649AB an important test for proposed radio emission mechanisms in ultracool dwarfs.Comment: 5 pages, 4 figures, accepted for publication in ApJ Letter

    The Chemical Composition of an Extrasolar Minor Planet

    Full text link
    We report the relative abundances of 17 elements in the atmosphere of the white dwarf star GD 362, material that, very probably, was contained previously in a large asteroid or asteroids with composition similar to the Earth/Moon system. The asteroid may have once been part of a larger parent body not unlike one of the terrestrial planets of our solar system.Comment: ApJ, in pres

    Shocks and a Giant Planet in the Disk Orbiting BP Piscium?

    Full text link
    Spitzer IRS spectroscopy supports the interpretation that BP Piscium, a gas and dust enshrouded star residing at high Galactic latitude, is a first-ascent giant rather than a classical T Tauri star. Our analysis suggests that BP Piscium's spectral energy distribution can be modeled as a disk with a gap that is opened by a giant planet. Modeling the rich mid-infrared emission line spectrum indicates that the solid-state emitting grains orbiting BP Piscium are primarily composed of ~75 K crystalline, magnesium-rich olivine; ~75 K crystalline, magnesium-rich pyroxene; ~200 K amorphous, magnesium-rich pyroxene; and ~200 K annealed silica ('cristobalite'). These dust grains are all sub-micron sized. The giant planet and gap model also naturally explains the location and mineralogy of the small dust grains in the disk. Disk shocks that result from disk-planet interaction generate the highly crystalline dust which is subsequently blown out of the disk mid-plane and into the disk atmosphere.Comment: 25 pages, 4 figures, 1 table. Accepted to Ap
    • …
    corecore