15 research outputs found

    Structural characterization of diabolic acid-based tetraester, tetraether and mixed ether/ester, membrane-spanning lipids of bacteria from the order Thermotogales

    Get PDF
    The distribution of core lipids in the membranes of nine different species of the order Thermotogales, one of the early and deep branching lineages in the Bacteria, were examined by HPLC/MS and demonstrated to consist of membrane-spanning diglycerol lipids comprised of diabolic acid-derived alkyl moieties. In the Thermotoga species the core membrane lipids are characterized by the presence of both ester and ether bonds, whereas in the phylogenetically more distinct Thermosipho and Fervidobacterium spp. only ester bonds occur. A tentative biosynthetic route for the biosynthesis of these membrane-spanning lipids is proposed. Since species of the order Thermotogales are assumed to have occurred early during the evolution of life on Earth, as suggested by its position in the phylogenetic tree of life, these data suggest that the ability to produce both ether and ester glycerol membrane lipids developed relatively early during microbial evolution

    Isolation and characterization of a new CO-utilizing strain, Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans, isolated from a geothermal spring in Turkey

    Get PDF
    A novel anaerobic, thermophilic, Gram-positive, spore-forming, and sugar-fermenting bacterium (strain TLO) was isolated from a geothermal spring in AyaƟ, Turkey. The cells were straight to curved rods, 0.4–0.6 Όm in diameter and 3.5–10 Όm in length. Spores were terminal and round. The temperature range for growth was 40–80°C, with an optimum at 70°C. The pH optimum was between 6.3 and 6.8. Strain TLO has the capability to ferment a wide variety of mono-, di-, and polysaccharides and proteinaceous substrates, producing mainly lactate, next to acetate, ethanol, alanine, H2, and CO2. Remarkably, the bacterium was able to grow in an atmosphere of up to 25% of CO as sole electron donor. CO oxidation was coupled to H2 and CO2 formation. The G + C content of the genomic DNA was 35.1 mol%. Based on 16S rRNA gene sequence analysis and the DNA–DNA hybridization data, this bacterium is most closely related to Thermoanaerobacter thermohydrosulfuricus and Thermoanaerobacter siderophilus (99% similarity for both). However, strain TLO differs from Thermoanaerobacter thermohydrosulfuricus in important aspects, such as CO-utilization and lipid composition. These differences led us to propose that strain TLO represents a subspecies of Thermoanaerobacter thermohydrosulfuricus, and we therefore name it Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans

    (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage

    Get PDF
    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5–0.8 Όm in diameter, and 2–8 Όm in length, growing as single cells or in pairs. The cells grew optimally at 37°C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H2/CO2 to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO2. The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts

    Potential for sulfate reduction in mangrove forest soils: Comparison between two dominant species of the Americas

    No full text
    Avicennia and Rhizophora are globally occurring mangrove genera with different traits that place them in different parts of the intertidal zone. It is generally accepted that the oxidizing capacity of Avicennia roots is larger than that of Rhizophora roots, which initiates more reduced conditions in the soil below the latter genus. We hypothesize that the more reduced conditions beneath Rhizophora stands lead to more active sulfate-reducing microbial communities compared to Avicennia stands. To test this hypothesis, we measured sulfate reduction traits in soil samples collected from neighboring Avicennia germinans and Rhizophora mangle stands at three different locations in southern Florida. The traits measured were sulfate reduction rates in flow-through reactors (FTR’s) containing undisturbed soil layers in the absence and presence of easily degradable carbon compounds, copy numbers of the dsrB gene, which is specific for sulfate-reducing microorganisms, and numbers of sulfate-reducing cells that are able to grow in liquid medium on a mixture of acetate, propionate and lactate as electron donors.At the tidal locations Port of the Islands and South Hutchinson Islands, steady state sulfate reduction rates, dsrB gene copy numbers and numbers of culturable cells were significantly higher at the A. germinans than at the R. mangle stands, although not significantly for the numbers at Port of the Islands. At the non-tidal location North Hutchinson Island, results are mixed with respect to these sulfate reduction traits. At all locations, the fraction of culturable cells were significantly higher at the R. mangle than at the A. germinans stands. The dynamics of the initial sulfate reduction rates implied a more in situ active sulfate reducing community at the intertidal R. mangle stands. It was concluded that in agreement with our hypothesis R. mangle stands accommodate a more active sulfate-reducing community than A. germinans stands, but only at the tidal locations. The differences between R. mangle and A. germinans stands were absent at the non-tidal, impounded location

    (Per)chlorate Reduction by the Thermophilic Bacterium Moorella perchloratireducens sp. nov., Isolated from Underground Gas Storage▿

    No full text
    A thermophilic bacterium, strain An10, was isolated from underground gas storage with methanol as a substrate and perchlorate as an electron acceptor. Cells were gram-positive straight rods, 0.4 to 0.6 ÎŒm in diameter and 2 to 8 ÎŒm in length, growing as single cells or in pairs. Spores were terminal with a bulged sporangium. The temperature range for growth was 40 to 70°C, with an optimum at 55 to 60°C. The pH optimum was around 7. The salinity range for growth was between 0 and 40 g NaCl liter−1 with an optimum at 10 g liter−1. Strain An10 was able to grow on CO, methanol, pyruvate, glucose, fructose, cellobiose, mannose, xylose, and pectin. The isolate was able to respire with (per)chlorate, nitrate, thiosulfate, neutralized Fe(III) complexes, and anthraquinone-2,6-disulfonate. The G+C content of the DNA was 57.6 mol%. On the basis of 16S rRNA analysis, strain An10 was most closely related to Moorella thermoacetica and Moorella thermoautotrophica. The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell extracts. Strain An10 is the first thermophilic and gram-positive bacterium with the ability to use (per)chlorate as a terminal electron acceptor
    corecore