53 research outputs found

    Modeling, control and simulation of full-power converter wind turbines equipped with permanent magnet synchronous generator

    Get PDF
    In this paper, two wind turbines equipped with a permanent magnet synchronous generator (PMSG) and respectively with a two-level or a multilevel converter are simulated in order to access the malfunction transient performance. Three different drive train mass models, respectively, one, two and three mass models, are considered in order to model the bending flexibility of the blades. Moreover, a fractional-order control strategy is studied comparatively to a classical integer-order control strategy. Computer simulations are carried out, and conclusions about the total harmonic distortion (THD) of the electric current injected into the electric grid are in favor of the fractional-order control strategy

    Power converter topologies for wind energy conversion systems: Integrated modeling, control strategy and performance simulation

    Get PDF
    This paper presents new integrated model for variable-speed wind energy conversion systems, considering a more accurate dynamic of the wind turbine, rotor, generator, power converter and filter. Pulse width modulation by space vector modulation associated with sliding mode is used for controlling the power converters. Also, power factor control is introduced at the output of the power converters. Comprehensive performance simulation studies are carried out with matrix, two-level and multilevel power converter topologies in order to adequately assert the system performance. Conclusions are duly drawn

    Solar resource assessment through long-term statistical analysis and typical data generation with different time resolutions using GHI measurements

    Get PDF
    This work addresses the solar resource assessment through long-term statistical analysis and typical weather data generation with different time resolutions, using measurements of Global Horizontal Irradiation (GHI) and other relevant meteorological variables from eight ground-based weather stations covering the south and north coasts and the central mountains of Madeira Island, Portugal. Typical data are generated based on the selection and concatenation of hourly data considering three different time periods (month, five-day and typical days) through a modified Sandia method. This analysis was carried out by computing the Root Mean Square Difference (RMSD) and the Normalized RMSD (NRMSD) for each time slot of the typical years taking the long-term average as reference. It was found that the datasets generated with typical days present a lower value of overall NRMSD. A comparison between the hourly values of the generated typical data and the long-term averages was also carried out using various statistical indicators. To simplify this analysis, those statistical indicators were combined into a single Global Performance Index (GPI). It was found that datasets based on typical days have the highest value of GPI, followed by the datasets based on typical five-day periods and then those based on typical months

    Offshore Wind Energy Conversion System Connected to the Electric Grid: Modeling and Simulation

    Get PDF
    This paper is on modeling and simulation for an offshore wind system equipped with a semi-submersible floating platform, a wind turbine, a permanent magnet synchronous generator, a multiple point clamped four level or five level full-power converter, a submarine cable and a second order filter. The drive train is modeled by three mass model considering the resistant stiffness torque, structure and tower in deep water due to the moving surface elevation. The system control uses PWM by space vector modulation associated with sliding mode and proportional integral controllers. The electric energy is injected into the electric grid either by an alternated current link or by a direct current link. The model is intend to be a useful tool for unveil the behavior and performance of the offshore wind system, especially for the multiple point clamped full-power converter, under normal operation or under malfunctions

    Fractional-order control and simulation of wind energy systems with PMSG/full-power converter topology

    Get PDF
    This paper presents a new integrated model for the simulation of wind energy systems. The proposed model is more realistic and accurate, considering a variable-speed wind turbine, two-mass rotor, permanent magnet synchronous generator (PMSG), different power converter topologies, and filters. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with PMSG/full-power converter topology, based on fractional-order controllers. Comprehensive simulation studies are carried out with matrix and multilevel power converter topologies, in order to adequately assert the system performance in what regards the quality of the energy injected into the electric grid. Finally, conclusions are duly drawn

    A Pitch Control Malfunction Analysis for Wind Turbines with Permanent Magnet Synchronous Generator and Full-power Converters: Proportional Integral Versus Fractional-order Controllers

    Get PDF
    A transient analysis for two full-power converter wind turbines equipped with a permanent magnet synchronous generator is studied in this article, taking into consideration, as a new contribution to earlier studies, a pitch control malfunction. The two full-power converters considered are, respectively, a two-level and a multi-level converter. Moreover, a novel control strategy based on fractional-order controllers for wind turbines is studied. Simulation results are presented; conclusions are in favor of the novel control strategy, improving the quality of the energy injected into the electric grid

    Simulation of a-Si PV system linked to the grid by DC-DC boost and two-level converter

    Get PDF
    This paper is about a PV system linked to the electric grid by power electronic converters. The modeling for the converters emulates the association of a DC-DC boost with a twolevel power inverter in order to follow the performance of a testing commercial inverter employed on an experimental system. It is used pulse width modulation by sliding mode control associated with space vector modulation for control the boost and the inverter. The PV system is described by the five parameters equivalent circuit and parameter identification is carried out. Maximum power point tracking is implemented by a P V procedure. Simulation studies are performed and a comparison with the testing experimental system is presented

    Activation of monocytes and cytokine production in patients with peripheral atherosclerosis obliterans

    Get PDF
    BACKGROUND: Arterial peripheral disease is a condition caused by the blocked blood flow resulting from arterial cholesterol deposits within the arms, legs and aorta. Studies have shown that macrophages in atherosclerotic plaque are highly activated, which makes these cells important antigen-presenting cells that develop a specific immune response, in which LDLox is the inducing antigen. As functional changes of cells which participate in the atherogenesis process may occur in the peripheral blood, the objectives of the present study were to evaluate plasma levels of anti-inflammatory and inflammatory cytokines including TNF-α, IFN-γ, interleukin-6 (IL-6), IL-10 and TGF-β in patients with peripheral arteriosclerosis obliterans, to assess the monocyte activation level in peripheral blood through the ability of these cells to release hydrogen peroxide (H(2)O(2)) and to develop fungicidal activity against Candida albicans (C. albicans) in vitro. METHODS: TNF-α, IFN-γ, IL-6, IL-10 and TGF-β from plasma of patients were detected by ELISA. Monocyte cultures activated in vitro with TNF-alpha and IFN-gamma were evaluated by fungicidal activity against C. albicans by culture plating and Colony Forming Unit (CFU) recovery, and by H(2)O(2 )production. RESULTS: Plasma levels of all cytokines were significantly higher in patients compared to those detected in control subjects. Control group monocytes did not release substantial levels of H(2)O(2 )in vitro, but these levels were significantly increased after activation with IFN-γ and TNF-α. Monocytes of patients, before and after activation, responded less than those of control subjects. Similar results were found when fungicidal activity was evaluated. The results seen in patients were always significantly smaller than among control subjects. Conclusions: The results revealed an unresponsiveness of patient monocytes in vitro probably due to the high activation process occurring in vivo as corroborated by high plasma cytokine levels

    Control and Supervision of Wind Energy Conversion Systems

    Get PDF
    This paper is about a PhD thesis and includes the study and analysis of the performance of an onshore wind energy conversion system. First, mathematical models of a variable speed wind turbine with pitch control are studied, followed by the study of different controller types such as integer-order controllers, fractional-order controllers, fuzzy logic controllers, adaptive controllers and predictive controllers and the study of a supervisor based on finite state machines is also studied. The controllers are included in the lower level of a hierarchical structure composed by two levels whose objective is to control the electric output power around the rated power. The supervisor included at the higher level is based on finite state machines whose objective is to analyze the operational states according to the wind speed. The studied mathematical models are integrated into computer simulations for the wind energy conversion system and the obtained numerical results allow for the performance assessment of the system connected to the electric grid. The wind energy conversion system is composed by a variable speed wind turbine, a mechanical transmission system described by a two mass drive train, a gearbox, a doubly fed induction generator rotor and by a two level converter
    corecore