687 research outputs found

    Developing ODP student placements

    Get PDF
    In a similar way to nursing and other health professions, elements of the education of operating department practitioners (ODPs) can only be contextualised by clinical practice involvement (Stockhausen and Strutt, 2005; Higginson, 2006; Morgan, 2006). The importance of high-quality placement experiences for all UK health professions is widely acknowledged (Quality Assurance Agency, 2001). Prior to 2009, students on the Diploma in Higher Education ODP programme undertook four clinical placements in the same Trust or organisation. At the time of the project there was a shortfall in the number of placements available and, although the university explored placing students in different clinical areas, such as private healthcare providers and new areas in the NHS, none could provide the full learning experience for students to achieve the required competencies. The course team developed a system that uses placements in a variety of settings and ensures students can gain the required outcomes. The new approach involves auditing for individual placements, instead of for the full course duration. Students are now informed throughout recruitment and selection events that they should be undertaking placements in a minimum of three different organisations. Students now move to a different organisation with every experience, to gain a variety of clinical knowledge. This has resulted in the greater use of clinical placements and the development of new areas for students to gain experience. The benefits of students’ experiences have increased, as they can develop skills and understanding of the ODP role from different perspectives

    Electron Positron Annihilation Radiation from SgrA East at the Galactic Center

    Get PDF
    Maps of the Galactic electron-positron annihilation radiation show evidence for three distinct and significant features: (1) a central bulge source, (2) emission in the Galactic plane, and (3) an enhancement of emission at positive latitudes above the Galactic Center. In this paper, we explore the possibility that Sgr A East, a very prominent radio structure surrounding the Galactic nucleus, may be a significant contributer to the central bulge feature. The motivation for doing so stems from a recently proposed link between this radio object and the EGRET gamma-ray source 2EG J1746-2852. If this association is correct, then Sgr A East is also expected to be a source of copious positron production. The results presented here show that indeed Sgr A East must have produced a numerically significant population of positrons, but also that most of them have not yet had sufficient time to thermalize and annihilate. As such, Sgr A East by itself does not appear to be the dominant current source of annihilation radiation, but it will be when the positrons have cooled sufficiently and they have become thermalized. This raises the interesting possibility that the bulge component may be due to the relics of earlier explosive events like the one that produced Sgr A East.Comment: This manuscript was prepared with the AAS Latex macros v4.0 It is 37 pages long and has 16 figure

    Is Thermal Expansion Driving the Initial Gas Ejection in NGC 6251?

    Get PDF
    In this paper, we explore the possibility that the radiative properties of the most compact region in NGC 6251* may be understood in the same sense as Sgr A*, though with some telling differences that may hint at the nature of jet formation. We show that observations of this object with ASCA, ROSAT, HST and VLBI together may be hinting at a picture in which Bondi-Hoyle accretion from an ambient ionized medium feeds a standard disk accreting at ~ 4.0*10^{22} g s^{-1}. Somewhere near the event horizon, this plasma is heated to >10^{11} K, where it radiates via thermal synchrotron (producing a radio component) and self-Comptonization (accounting for a nonthermal X-ray flux). This temperature is much greater than its virial value and the hot cloud expands at roughly the sound speed (~0.1c), after which it begins to accelerate on a parsec scale to relativistic velocities. In earlier work, the emission from the extended jet has been modeled successfully using nonthermal synchrotron self-Compton processes, with a self-absorbed inner core. In the picture we are developing here, the initial ejection of matter is associated with a self-absorbed thermal radio component that dominates the core emission on the smallest scales. The nonthermal particle distributions responsible for the emission in the extended jet are then presumably energized, e.g., via shock acceleration, within the expanding, hot gas. The power associated with this plasma represents an accretion efficiency of about 0.54, requiring dissipation in a prograde disk around a rapidly spinning black hole (with spin parameter a~1).Comment: 17 pages, 1 figures, to appear in Ap

    The Role of Magnetic Field Dissipation in the Black Hole Candidate Sgr A*

    Get PDF
    The compact, nonthermal radio source Sgr A* at the Galactic Center appears to be coincident with a 2.6 million solar mass point-like object. Its energy source may be the release of gravitational energy as gas from the interstellar medium descends into its potential well. Simple attempts at calculating the spectrum and flux based on this picture have come close to the observations, yet have had difficulty in accounting for the low efficiency in this source. There now appear to be two reasons for this low conversion rate: (1) the plasma separates into two temperatures, with the protons attaining a significantly higher temperature than that of the radiating electrons, and (2) the magnetic field, B, is sub-equipartition, which reduces the magnetic bremsstrahlung emissivity, and therefore the overall power of Sgr A*. We investigate the latter with improvement over what has been attempted before: rather than calculating B based on a presumed model, we instead infer its distribution with radius empirically with the requirement that the resulting spectrum matches the observations. Our ansatz for B(r) is motivated in part by earlier calculations of the expected magnetic dissipation rate due to reconnection in a compressed flow. We find reasonable agreement with the observed spectrum of Sgr A* as long as its distribution consists of 3 primary components: an outer equipartition field, a roughly constant field at intermediate radii (~1000 Schwarzschild radii), and an inner dynamo (more or less within the last stable orbit for a non-rotating black hole) which increases B to about 100 Gauss. The latter component accounts for the observed sub-millimiter hump in this source.Comment: 33 pages including 2 figures; submitted to Ap

    The Broadband Spectrum of Galaxy Clusters

    Full text link
    We examine whether nonthermal protons energized during a cluster merger are simultaneously responsible for the Coma cluster's diffuse radio flux (via secondary decay) and the departure of its intra-cluster medium (ICM) from a thermal profile via Coulomb collisions between the quasithermal electrons and the hadrons. Rather than approximating the influence of nonthermal proton/thermal electron collisions as extremely rare events which cause an injection of nonthermal, power-law electrons (the `knock-on' approximation), we self-consistently solve (to our knowledge, for the first time) the covariant kinetic equations for the two populations. The electron population resulting from these collisions is out of equilibrium, yet not a power law, and importantly displays a higher bremsstrahlung radiative efficiency than a pure power law. Observations with GLAST will test this model directly.Comment: Accepted for publication in Ap

    A Monte Carlo Study of the 6.4 keV Emission at the Galactic Center

    Full text link
    Strong fluorescent Fe line emission at 6.4 keV has been observed from the Sgr B2 giant molecular cloud located in the Galactic Center region. The large equivalent width of this line and the lack of an apparent illuminating nearby object indicate that a time-dependent source, currently in a low-activity state, is causing the fluorescent emission. It has been suggested that this illuminator is the massive black hole candidate, Sgr A*, whose X-ray luminosity has declined by an unprecedented six orders of magnitude over the past 300 years. We here report the results of our Monte Carlo simulations for producing this line under a variety of source configurations and characteristics. These indicate that the source may in fact be embedded within Sgr B2, although external sources give a slightly better fit to the data. The weakened distinction between the internal and external illuminators is due in part to the instrument response function, which accounts for an enhanced equivalent width of the line by folding some of the continuum radiation in with the intrinsic line intensity. We also point out that although the spectrum may be largely produced by Kα\alpha emission in cold gas, there is some evidence in the data to suggest the presence of warm (~10^5 K) emitting material near the cold cloud.Comment: 11 pages, 4 figure

    Viewing the Shadow of the Black Hole at the Galactic Center

    Get PDF
    In recent years, the evidence for the existence of an ultra-compact concentration of dark mass associated with the radio source Sgr A* in the Galactic Center has become very strong. However, an unambiguous proof that this object is indeed a black hole is still lacking. A defining characteristic of a black hole is the event horizon. To a distant observer, the event horizon casts a relatively large ``shadow'' with an apparent diameter of ~10 gravitational radii due to bending of light by the black hole, nearly independent of the black hole spin or orientation. The predicted size (~30 micro-arcseconds) of this shadow for Sgr A* approaches the resolution of current radio-interferometers. If the black hole is maximally spinning and viewed edge-on, then the shadow will be offset by ~8 micro-arcseconds from the center of mass, and will be slightly flattened on one side. Taking into account scatter-broadening of the image in the interstellar medium and the finite achievable telescope resolution, we show that the shadow of Sgr A* may be observable with very long-baseline interferometry at sub-millimeter wavelengths, assuming that the accretion flow is optically thin in this region of the spectrum. Hence, there exists a realistic expectation of imaging the event horizon of a black hole within the next few years.Comment: 5 pages, 1 figure (color), (AAS)Tex, to appear in The Astrophysical Journal Letters, Vol. 528, L13 (Jan 1, 2000 issue); also available at http://www.mpifr-bonn.mpg.de/staff/hfalcke/publications.html#bhimag

    Neutrinos and Gamma Rays from Galaxy Clusters

    Full text link
    The next generation of neutrino and gamma-ray detectors should provide new insights into the creation and propagation of high-energy protons within galaxy clusters, probing both the particle physics of cosmic rays interacting with the background medium and the mechanisms for high-energy particle production within the cluster. In this paper we examine the possible detection of gamma-rays (via the GLAST satellite) and neutrinos (via the ICECUBE and Auger experiments) from the Coma cluster of galaxies, as well as for the gamma-ray bright clusters Abell 85, 1758, and 1914. These three were selected from their possible association with unidentified EGRET sources, so it is not yet entirely certain that their gamma-rays are indeed produced diffusively within the intracluster medium, as opposed to AGNs. It is not obvious why these inconspicuous Abell-clusters should be the first to be seen in gamma-rays, but a possible reason is that all of them show direct evidence of recent or ongoing mergers. Their identification with the EGRET gamma-ray sources is also supported by the close correlation between their radio and (purported) gamma-ray fluxes. Under favorable conditions (including a proton spectral index of 2.5 in the case of Abell 85, and sim 2.3 for Coma, and Abell 1758 and 1914), we expect ICECUBE to make as many as 0.3 neutrino detections per year from the Coma cluster of galaxies, and as many as a few per year from the Abell clusters 85, 1758, and 1914. Also, Auger may detect as many as 2 events per decade at ~ EeV energies from these gamma-ray bright clusters.Comment: Accepted for publication in Ap

    Educating the future workforce: building the evidence about interprofessional learning

    No full text
    This paper addresses the theme of interprofessional education for health and social care professionals as it effects on the development of the work force. The drivers for change in the UK, typified by the Bristol Royal Infirmary and Victoria Climbié inquiries and the response to this in the form of Department of Health policy, are discussed. The need for rapid development of the evidence base around this subject is evident form literature reviews of the impact of interprofessional education. Directions for future research and investment in this area are proposed including the need for a stronger theoretical base and for longitudinal studies over extended periods of time in order to examine short, medium and long term outcomes in relation to health care practice

    t \bar{t} W production and decay at NLO

    Full text link
    We present results for the production of a top pair in association with a W-boson at next-to-leading order. We have implemented this process into the parton-level integrator MCFM including the decays of both the top quarks and the W-bosons with full spin correlations. Although the cross section for this process is small, it is a Standard Model source of same-sign lepton events that must be accounted for in many new physics searches. For a particular analysis of same-sign lepton events in which b-quarks are also present, we investigate the effect of the NLO corrections as a function of the signal region cuts.Comment: 10 pages, 7 figure
    • …
    corecore