850 research outputs found

    Proper Size of the Visible Universe in FRW Metrics with Constant Spacetime Curvature

    Full text link
    In this paper, we continue to examine the fundamental basis for the Friedmann-Robertson-Walker (FRW) metric and its application to cosmology, specifically addressing the question: What is the proper size of the visible universe? There are several ways of answering the question of size, though often with an incomplete understanding of how far light has actually traveled in reaching us today from the most remote sources. The difficulty usually arises from an inconsistent use of the coordinates, or an over-interpretation of the physical meaning of quantities such as the so-called proper distance R(t)=a(t)r, written in terms of the (unchanging) co-moving radius r and the universal expansion factor a(t). In this paper, we use the five non-trivial FRW metrics with constant spacetime curvature (i.e., the static FRW metrics, but excluding Minkowski) to prove that in static FRW spacetimes in which expansion began from an initial signularity, the visible universe today has a proper size equal to R_h(t_0/2), i.e., the gravitational horizon at half its current age. The exceptions are de Sitter and Lanczos, whose contents had pre-existing positions away from the origin. In so doing, we confirm earlier results showing the same phenomenon in a broad range of cosmologies, including LCDM, based on the numerical integration of null geodesic equations through an FRW metric.Comment: Accepted for publication in Classical and Quantum Gravit

    The physicist's guide to one of biotechnology's hottest new topics: CRISPR-Cas

    Full text link
    Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) constitute a multi-functional, constantly evolving immune system in bacteria and archaea cells. A heritable, molecular memory is generated of phage, plasmids, or other mobile genetic elements that attempt to attack the cell. This memory is used to recognize and interfere with subsequent invasions from the same genetic elements. This versatile prokaryotic tool has also been used to advance applications in biotechnology. Here we review a large body of CRISPR-Cas research to explore themes of evolution and selection, population dynamics, horizontal gene transfer, specific and cross-reactive interactions, cost and regulation, non-immunological CRISPR functions that boost host cell robustness, as well as applicable mechanisms for efficient and specific genetic engineering. We offer future directions that can be addressed by the physics community. Physical understanding of the CRISPR-Cas system will advance uses in biotechnology, such as developing cell lines and animal models, cell labeling and information storage, combatting antibiotic resistance, and human therapeutics.Comment: 75 pages, 15 figures, Physical Biology (2018

    Flipping Out(ward): Changing the Instructional Model for Large-Enrollment Courses

    Get PDF
    Citation: Citation: Pitts, J., Fritch, M. (2017) Flipping Out(ward): Changing the Instructional Model for Large-Enrollment Courses. Creative Instructional Design: Practical Applications for Librarians. p.227-242For years, Kansas State University Libraries taught face-to-face library instruction sessions for the general education courses, Expository Writing and Public Speaking. We called these Library Days, as they were scheduled daily over week-long periods due to the large number of sections. Expository Writing Library Days were four days of back-to-back, lecture-style sessions for around 1,100 students. It took two weeks to schedule the fifty sections of the course and the eleven librarians needed to lead the instruction and separately operate the computer for each section. The sessions needed to be organized to cover each different research paper assignment and required additional PowerPoint presentations in case the Internet crashed during a session. This was in addition to creating the instruction outlines for all the librarians to follow so each and every student saw the same material, no matter which session they attended. Each session was fifty minutes with approximately seventy students. By the end of the week, we could only hope that the students retained at least ten minutes of our material. This is how we spent a significant amount of library staff time prior to embarking on wide-scale, flipped-classroom implementation that not only transformed how we taught large-enrollment classes, but provided an avenue for improved student learning and self-service. This chapter will cover the design iterations of the online component and discuss the rapid prototyping process utilized to design and implement the program. Assessment and logistics will also be discussed, as will lessons learned and design specifications to consider when embarking on a project of this scale. In essence, we’ll describe how K-State Libraries went from flipping out during Library Days to flipping out(ward) using an effective flipped-classroom model

    Plasma Perturbations and Cosmic Microwave Background Anisotropy in the Linearly Expanding Milne-like Universe

    Full text link
    We expose the scenarios of primordial baryon-photon plasma evolution within the framework of the Milne-like universe models. Recently, such models find a second wind and promise an inflation-free solution of a lot of cosmological puzzles including the cosmological constant one. Metric tensor perturbations are considered using the five-vectors theory of gravity admitting the Friedmann equation satisfied up to some constant. The Cosmic Microwave Background (CMB) spectrum is calculated qualitatively.Comment: 20 page

    Nothing is Permanent but Change: The Journey to Consolidation and Back

    Get PDF
    Responding to a staffing shortage and assessment of usage data, eight of Hale Library's nine service desks were consolidated into one service point. Fourteen months later, the Libraries conducted an assessment of the consolidation using reference transaction data, responses to a survey administered to Libraries’ staff, and responses from a student focus group. The assessment revealed many logistical and staffing challenges with the new desk. As a result, a separate service point for reference was created directly outside the consolidated desk. Our statistics indicate that this was a successful change

    Surgical correction of unsuccessful derotational humeral osteotomy in obstetric brachial plexus palsy: Evidence of the significance of scapular deformity in the pathophysiology of the medial rotation contracture

    Get PDF
    BACKGROUND: The current method of treatment for persistent internal rotation due to the medial rotation contracture in patients with obstetric brachial plexus injury is humeral derotational osteotomy. While this procedure places the arm in a more functional position, it does not attend to the abnormal glenohumeral joint. Poor positioning of the humeral head secondary to elevation and rotation of the scapula and elongated acromion impingement causes functional limitations which are not addressed by derotation of the humerus. Progressive dislocation, caused by the abnormal positioning and shape of the scapula and clavicle, needs to be treated more directly. METHODS: Four patients with Scapular Hypoplasia, Elevation And Rotation (SHEAR) deformity who had undergone unsuccessful humeral osteotomies to treat internal rotation underwent acromion and clavicular osteotomy, ostectomy of the superomedial border of the scapula and posterior capsulorrhaphy in order to relieve the torsion developed in the acromio-clavicular triangle by persistent asymmetric muscle action and medial rotation contracture. RESULTS: Clinical examination shows significant improvement in the functional movement possible for these four children as assessed by the modified Mallet scoring, definitely improving on what was achieved by humeral osteotomy. CONCLUSION: These results reveal the importance of recognizing the presence of scapular hypoplasia, elevation and rotation deformity before deciding on a treatment plan. The Triangle Tilt procedure aims to relieve the forces acting on the shoulder joint and improve the situation of the humeral head in the glenoid. Improvement in glenohumeral positioning should allow for better functional movements of the shoulder, which was seen in all four patients. These dramatic improvements were only possible once the glenohumeral deformity was directly addressed surgically

    The Role of Magnetic Field Dissipation in the Black Hole Candidate Sgr A*

    Get PDF
    The compact, nonthermal radio source Sgr A* at the Galactic Center appears to be coincident with a 2.6 million solar mass point-like object. Its energy source may be the release of gravitational energy as gas from the interstellar medium descends into its potential well. Simple attempts at calculating the spectrum and flux based on this picture have come close to the observations, yet have had difficulty in accounting for the low efficiency in this source. There now appear to be two reasons for this low conversion rate: (1) the plasma separates into two temperatures, with the protons attaining a significantly higher temperature than that of the radiating electrons, and (2) the magnetic field, B, is sub-equipartition, which reduces the magnetic bremsstrahlung emissivity, and therefore the overall power of Sgr A*. We investigate the latter with improvement over what has been attempted before: rather than calculating B based on a presumed model, we instead infer its distribution with radius empirically with the requirement that the resulting spectrum matches the observations. Our ansatz for B(r) is motivated in part by earlier calculations of the expected magnetic dissipation rate due to reconnection in a compressed flow. We find reasonable agreement with the observed spectrum of Sgr A* as long as its distribution consists of 3 primary components: an outer equipartition field, a roughly constant field at intermediate radii (~1000 Schwarzschild radii), and an inner dynamo (more or less within the last stable orbit for a non-rotating black hole) which increases B to about 100 Gauss. The latter component accounts for the observed sub-millimiter hump in this source.Comment: 33 pages including 2 figures; submitted to Ap
    • …
    corecore