61 research outputs found

    Earthquake rupture forecasts for the mps19 seismic hazard model of Italy

    Get PDF
    In recent years, new approaches for developing earthquake rupture forecasts (ERFs) have been proposed to be used as an input for probabilistic seismic hazard assessment (PSHA). Zone-based approaches with seismicity rates derived from earthquake catalogs are commonly used in many countries as the standard for national seismic hazard models. In Italy, a single zone-based ERF is currently the basis for the official seismic hazard model. In this contribution, we present eleven new ERFs, including five zone-based, two smoothed seismicity-based, two fault-based, and two geodetic-based, used for a new PSH model in Italy. The ERFs were tested against observed seismicity and were subject to an elicitation procedure by a panel of PSHA experts to verify the scientific robustness and consistency of the forecasts with respect to the observations. Tests and elicitation were finalized to weight the ERFs. The results show a good response to the new inputs to observed seismicity in the last few centuries. The entire approach was a first attempt to build a community-based set of ERFs for an Italian PSHA model. The project involved a large number of seismic hazard practitioners, with their knowledge and experience, and the development of different models to capture and explore a large range of epistemic uncertainties in building ERFs, and represents an important step forward for the new national seismic hazard model

    Platelet Activating Factor Blocks Interkinetic Nuclear Migration in Retinal Progenitors through an Arrest of the Cell Cycle at the S/G2 Transition

    Get PDF
    Nuclear migration is regulated by the LIS1 protein, which is the regulatory subunit of platelet activating factor (PAF) acetyl-hydrolase, an enzyme complex that inactivates the lipid mediator PAF. Among other functions, PAF modulates cell proliferation, but its effects upon mechanisms of the cell cycle are unknown. Here we show that PAF inhibited interkinetic nuclear migration (IKNM) in retinal proliferating progenitors. The lipid did not, however, affect the velocity of nuclear migration in cells that escaped IKNM blockade. The effect depended on the PAF receptor, Erk and p38 pathways and Chk1. PAF induced no cell death, nor a reduction in nucleotide incorporation, which rules out an intra-S checkpoint. Notwithstanding, the expected increase in cyclin B1 content during G2-phase was prevented in the proliferating cells. We conclude that PAF blocks interkinetic nuclear migration in retinal progenitor cells through an unusual arrest of the cell cycle at the transition from S to G2 phases. These data suggest the operation, in the developing retina, of a checkpoint that monitors the transition from S to G2 phases of the cell cycle

    miRNAs Expression Analysis in Paired Fresh/Frozen and Dissected Formalin Fixed and Paraffin Embedded Glioblastoma Using Real-Time PCR

    Get PDF
    miRNAs are small molecules involved in gene regulation. Each tissue shows a characteristic miRNAs epression profile that could be altered during neoplastic transformation. Glioblastoma is the most aggressive brain tumour of the adult with a high rate of mortality. Recognizing a specific pattern of miRNAs for GBM could provide further boost for target therapy. The availability of fresh tissue for brain specimens is often limited and for this reason the possibility of starting from formalin fixed and paraffin embedded tissue (FFPE) could very helpful even in miRNAs expression analysis. We analysed a panel of 19 miRNAs in 30 paired samples starting both from FFPE and Fresh/Frozen material. Our data revealed that there is a good correlation in results obtained from FFPE in comparison with those obtained analysing miRNAs extracted from Fresh/Frozen specimen. In the few cases with a not good correlation value we noticed that the discrepancy could be due to dissection performed in FFPE samples. To the best of our knowledge this is the first paper demonstrating that the results obtained in miRNAs analysis using Real-Time PCR starting from FFPE specimens of glioblastoma are comparable with those obtained in Fresh/Frozen samples

    S

    No full text

    A parameter study of strato-rotational low-frequency modulations: impacts on momentum transfer and energy distribution

    No full text
    International audiencePrevious comparisons of experimental data with non-linear numerical simulations of density stratified Taylor-Couette flows revealed non-linear interactions of strato-rotational instability (SRI) modes that lead to periodic changes in the SRI spirals and their axial propagation. These pattern changes are associated to low-frequency velocity modulations that are related to the dynamics of two competing spiral wave modes propagating in opposite directions. In the present paper, a parameter study of the strato-rotational instability (SRI) is performed using Direct Numerical Simulations to evaluate the influence of the Reynolds numbers, the stratification, and of the container geometry on these SRI low-frequency modulations and spiral pattern changes. The results of this parameter study show that the modulations can be considered as a secondary instability that are not observed for all SRI unstable regimes. The findings are of interest when the Taylor-Couette odel is related to star formation processes in accretion disks

    A parameter study of strato-rotational low-frequency modulations: impacts on momentum transfer and energy distribution

    No full text
    International audiencePrevious comparisons of experimental data with non-linear numerical simulations of density stratified Taylor-Couette flows revealed non-linear interactions of strato-rotational instability (SRI) modes that lead to periodic changes in the SRI spirals and their axial propagation. These pattern changes are associated to low-frequency velocity modulations that are related to the dynamics of two competing spiral wave modes propagating in opposite directions. In the present paper, a parameter study of the strato-rotational instability (SRI) is performed using Direct Numerical Simulations to evaluate the influence of the Reynolds numbers, the stratification, and of the container geometry on these SRI low-frequency modulations and spiral pattern changes. The results of this parameter study show that the modulations can be considered as a secondary instability that are not observed for all SRI unstable regimes. The findings are of interest when the Taylor-Couette odel is related to star formation processes in accretion disks
    • …
    corecore