4 research outputs found

    NMR-Based Metabonomic Analysis of Physiological Responses to Starvation and Refeeding in the Rat

    No full text
    Starvation is a postabsorptive condition derived from a limitation on food resources by external factors. Energy homeostasis is maintained under this condition by using sources other than glucose via adaptive mechanisms. After refeeding, when food is available, other adaptive processes are linked to energy balance. However, less has been reported about the physiological mechanisms present as a result of these conditions, considering the rat as a supraorganism. Metabolic profiling using 1H nuclear magnetic resonance spectroscopy was used to characterize the physiological metabolic differences in urine specimens collected under starved, refed, and recovered conditions. In addition, because starvation induced lack of faecal production and not all animals produced faeces during refeeding, 24 h pooled faecal water samples were also analyzed. Urinary metabolites upregulated by starvation included 2-butanamidoacetate, 3-hydroxyisovalerate, ketoleucine, methylmalonate, p-cresyl glucuronide, p-cresyl sulfate, phenylacetylglycine, pseudouridine, creatinine, taurine, and N-acetyl glycoprotein, which were related to renal and skeletal muscle function, β-oxidation, turnover of proteins and RNA, and host–microbial interactions. Food-derived metabolites, including gut microbial cometabolites, and tricarboxylic acid cycle intermediates were upregulated under refed and recovered conditions, which characterized anabolic urinary metabotypes. The upregulation of creatine and pantothenate indicated an absorptive state after refeeding. Fecal short chain fatty acids, 3-(3-hydroxyphenyl)propionate, lactate, and acetoin provided additional information about the combinatorial metabolism between the host and gut microbiota. This investigation contributes to allow a deeper understanding of physiological responses associated with starvation and refeeding

    NMR-based metabonomic analysis of normal rat urine and faeces in response to (+/-)-venlafaxine treatment

    No full text
    (±)-Venlafaxine, a bicyclic antidepressant of the serotonin-norepinephrine reuptake inhibitor (SNRI) class, is prescribed for the treatment of depression and anxiety disorders. As is the case with other antidepressants, its precise mechanisms of action are still unknown. Pharmacometabonomic approaches allow for the detection of diverse metabolites, unlike classic methods for analysing drug interaction based on single metabolites and linear pathways. This provides a global view of the state of homeostasis during treatment and an insight into the mechanisms of action of a drug. Accordingly, the final outcome of treatment is characterised by the network of reactome pathways derived from the on-target and off-target effects of the drug. Regarding antidepressants, the drug network may be located in the gut–microbiome–brain–liver–kidney–immune–cardiovascular system axis (GMBLKICA), implying that neurotransmitters participate as signalling molecules in bidirectional communication. If their bioavailability is increased, this communication and the state of homeostasis may be disrupted. With a pharmacometabonomic approach using NMR in combination with different chemometric methods, a determination was made of subtle changes in the metabolic profile (metabotype) of urine and faeces in normal Wistar rats following a single administration of pharmacological doses of (±)-venlafaxine hydrochloride. Based on the drug-response metabotypes observed, (±)-venlafaxine had effects on gut microbial co-metabolites and osmolytes. Hence, it can be hypothesized that bidirectional communication in the multiorgan axis was perturbed by this drug, and very likely by its active metabolite, (±)-desvenlafaxine. This disrupted signalling could be related not only to therapeutic and adverse effects, but also to the lag period in treatment response

    Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology

    No full text
    Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture

    Functional Foods and Nutraceuticals as Dietary Intervention in Chronic Diseases; Novel Perspectives for Health Promotion and Disease Prevention

    No full text
    corecore