13 research outputs found

    Seafloor massive sulfides from mid-ocean ridges: Exploring the causes of their geochemical variability with multivariate analysis

    Get PDF
    The neovolcanic zones of mid-ocean ridges are host to seawater-derived hydrothermal systems forming seafloor massive sulfide (SMS) deposits. These deposits have high concentrations of base metals and potentially economic enrichment of a wide range of trace elements. The factors controlling this enrichment are currently poorly understood. We have investigated the main factors controlling SMS compositional variability through robust principal component analysis and robust factor analysis of published and newly obtained bulk geochemical data for samples collected from SMS deposits worldwide. We found that a large part of the observed variability is produced by a combination of three independent factors, which are interpreted to reflect (in order of importance): (1) the temperature of deposition, (2) the ridge spreading rate, and (3) zone refining. The first and the third factors are mostly related to processes operating near the seafloor, such as conductive cooling, mixing of the hydrothermal fluids with seawater and metal remobilization, and determine the relative proportions of the main minerals and, thus, of Cu and Zn (Co, Se, Sb, Pb). The ridge spreading rate influences the structure of the oceanic lithosphere, which exerts a major control on the length and depth of the hydrothermal convection cell and on the rock-to-water ratios in the reaction zone, which in turn control the behavior of the precious metals Au and Ag and elements including Ni (Mo, Se). Despite the obvious role of substrate rocks as metal sources, their composition (specifically mafic vs. ultramafic) does not emerge as a statistically significant independent factor

    Native arsenic at the Semenov-2 hydrothermal sulfide field

    No full text
    Chemical composition of native arsenic and associated minerals; chemical data necessary for the physicochemical modeling of formation of native arsenicTHIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV

    Cu–(Ni–Co–Au)-bearing massive sulfide deposits associated with mafic–ultramafic rocks of the Main Urals Fault, South Urals: Geological structures, ore textural and mineralogical features, comparison with modern analogs

    No full text
    Cu-rich massive sulfide deposits associated with mafic–ultramafic rocks in the southern portion of the Main Urals Fault (MUF) are characterized by variable enrichments in Ni (up to 0.45 wt.%), Co (up to 10 wt.%) and Au (up to 16 ppm in individual hand-specimens). The Cu (Ni–Co)-rich composition of MUF deposits, as opposed to the Cu (Zn)-rich composition of more eastward massive sulfide deposits of broadly similar age along the western flank of the Magnitogorsk arc, reflects the abundance of seafloor-exposed, Ni–Co-rich ultramafic rocks in the most external portion of the Early-Devonian Magnitogorsk forearc. Morphological, textural, and compositional differences between individual deposits are interpreted to be the result of the sulfide deposition style and, in part, of the original subseafloor lithology. One deposit produced by dominantly on-seafloor hydrothermal processes is characterized by pyrite–marcasite>>pyrrhotite, not so low Zn grades (occasionally up to 2 wt.%), abundant clastic facies and periodical superficial oxidation. Deposits produced by dominantly subseafloor hydrothermal processes are characterized by pyrrhotite>pyrite, very low Zn (generally < to << 0.1 wt.%), volumetrically minor clastic facies, and multi-layer deposit morphology. Very low Ni/Co ratios in the on-seafloor deposit may indicate a dominant metal contribution from a mafic rather than ultramafic source. The sulfide mineralization was associated with extensive hydrothermal alteration of the host ultramafic and mafic rocks, leading to formation of abundant talc, talc–carbonate and chlorite rocks.Occurrence of large volumes of such altered lithotypes in ophiolitic belts may be considered as a potential searching criteria for MUF-type (Cu, Co, Ni)-deposits. In spite of the contrasting geodynamic environment, geological, geochemical, textural and mineralogical peculiarities of the MUF deposits in many respects are similar to those of ultramafic-hosted massive sulfide deposits along the Mid-Atlantic Ridge. In geological time, supra subduction-zone settings appear to have been more effective than mid-ocean ridge settings for preservation of ultramafic-hosted massive sulfide deposits

    Massive sulfides of the new hydrothermal sulfide cluster Semyenov (13°31' N), Mid-Atlantic Ridge

    No full text
    The paper describes the ores from the new hydrothermal sulfide cluster named Semenov (13°31´N, Mid-Atlantic Ridge) composed of several hydrothermal fields. Ores from the Semyenov-1, -3 and -4 hydrothermal fields show marcasite-pyrite composition with fine-grained, colloform, and clastic textures. Ores from the Semyenov-2 hydrothermal site are characterized by isocubanite-chalcopyrite-sphalerite-wurtzite mineral assemblage with fine-grained aggregates. They are uniquely enriched in Au (up to 188 ppm) and Ag (up to 1787 ppm) and conatin visible gold associated with opal, sphalerite and chalcopyrite. Ore textural analyses of ores from the Semenov hydrothermal sulfide cluster allowed us to reveal several ore facies (cf. Maslennikov and Zaykov, 2006): subseafloor hydrothermal, seafloor hydrothermal and clastic. The veinlet-disseminated ores from the Semyenov-2 and -4 hydrothermal fields belong to the subseafloor hydrothermal facies which is formed below the seafloor simultaneously with seafloor hydrothermal processes. Seafloor hydrothermal facies, formed on the seafloor surface near the hydrothermal vents, was found at the Semenov-1 and -2 hydrothermal fields and includes fine-grained and colloform ores. Clastic facies resulted from destruction of sulfide ores occurs at the Semenov-3 field as colluvial pyrite breccia. Textural and mineralogical features of ore facies from the Semenov hydrothermal cluster are comparable with those from massive sulfide deposits of the Urals

    Peculiarities of some mafic-ultramafic- and ultramafic-hosted massive sulfide deposits fom the Main Uralian Fault Zone, southern Urals

    No full text
    Some Cu-rich, mafic-ultramafic- and ultramafic-hosted massive sulfide deposits from the southern segment of the Main Uralian Fault Zone (Ivanovka and Ishkinino deposits, southern Urals) show unusual characteristics. Their major features include: (i) relatively high Co (Ni, An), very low Zn and negligible Pb grades; (ii) a pyrrhotite-dominated mineralization, locally characterized by the presence of open- latticework aggregates of lamellar pyrrhotite with Mg-saponite Mg-chlorite and carbonate matrix; (iii) hydrothermal alteration of ultramafic host rocks into talc carbonate quartz chlorite and of mafic host rocks into chloritites; (iv) the presence of clastic facies with reworked sulfide and ultramafic or mafic components; (v) the widespread occurrence of sulfide-associated chromite; (vi) the specific mineralogy of Co, Ni, Fe and As, including sulfoarsenides, mono- and diarsenides, and Co-rich pentlandite and pyrite; (vii) the supra-subduction -zone geochemical signature of the host serpentinites and volcanic rocks. Although some of these features have been separately reported in certain modem ocean-seafloor and ophiolite-hosted fossil deposits, a true equivalent has yet to be found. Based on recognized partial analogies with a few modem seafloor examples, the arc tholeiitic-boninitic geochemical signature of sulfide-associated volcanic rocks and the highly refractory compositions of sulfide-hosted chromite relicts, the studied deposits are believed to have formed by seafloor-subseafloor hydrothermal processes in an oceanic island arc setting. Possible tectonostratigraphic correlation of sulfide-associated units with infant, non-accretionary arc volcanic units of the adjacent Magnitogorsk oceanic island-arc system suggests formation of the studied deposits during the earliest stages of Devonian subduction-related volcanism

    Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: Mineral and trace element comparison with modern black, grey, white and clear smokers

    No full text
    In the Urals, a wide range of well-preserved chimneys are found in VMS deposits, which are associated with ultramafic (Atlantic type: Dergamysh), mafic (Cyprus type: Buribay), bimodal mafic (Uralian type: Yubileynoye, Sultanovskoye, Yaman-Kasy, Molodezhnoye, Uzelga-4, Valentorskoye) and bimodal felsic (Kuroko or Baymak type: Oktyabrskoye, Tash-Tau, Uselga-1, Talgan, Alexandrinskoye) sequences. Chimneys have also been found in the Safyanovskoye deposit (Altay type) that is hosted by intercalated felsic lavas and carbonaceous shales. A combination of geological, mineralogical and trace element data provide a general outline for comparison between chimneys from the Urals deposits and modern vent sites. The chimneys from the Dergamysh deposit show a broad affinity with those from the Rainbow and other vent sites associated with serpentinites of the Mid-Atlantic Ridge. The chimneys from the Buribay deposit are similar to the black smokers of the EPR vent sites including the scarcity of rare minerals. The chimneys from the Urals type of the VMS deposits show some similarities with grey smokers from the Brother Volcano and PACMANUS sites. The chimneys from the Baymak type of the VMS deposits resemble grey and white smokers of the PACMANUS and grey smokers of the Suiyo vent sites. The chimneys from the Safyanovskoye deposit are similar to the black and clear smokers from the Okinawa Trough. Mineral assemblages are controlled by the combination of host rock composition and physico-chemical conditions of the ore-forming processes.Amount of colloform pyrite, isocubanite and pseudomorphic pyrite and marcasite after pyrrhotite decreases in the chimneys across the range from ultramafic and mafic to felsic-hosted deposits and is concomitant with increase in the contents of sphalerite, galena, bornite, fahlores, native gold and barite across this range. The chimneys from the Urals type contain abundant tellurides and sulfoarsenides, while these minerals are rare (except for hessite) in the Baymak type deposits. In the same range, the buffering capacity of host rocks decreases in contrast to the increase in ƒS2 and ƒO2. With the exception of the Safyanovskoye deposit, trace element assemblages in chalcopyrite vary to reflect the host rock: ultramafic (high Se, Sn, Co, Ni, Ag and Au) → mafic (high Co, Se, Mo and low Bi, Au and Pb) → bimodal mafic (high Te, Au, Ag, Bi, Pb, Co, moderate Se, and variable As and Sb) → bimodal felsic (high As, Sb, Mo, Pb, moderate Bi, and low Co, Te and Se). In sphalerite of the same range, the contents of Bi, Pb, Ag, Au and Sb increase versus Fe, Se and Сo. The variations in trace elements in colloform pyrite coincide with these changes. The specific mineral changes in the local ranges from Cu- to Zn-rich chimneys in each VMS deposit are similar to the general changes in the range of host rock classes of the deposits. However, the local T, ƒS2 and ƒO2 changes can broadly be interpreted in terms of contribution of variable oxygenated cold seawater to the subseafloor and seafloor hydrothermal processes

    Gold- and Silver-Rich Massive Sulfides from the Semenov-2 Hydrothermal Field, 13\ub031.13\u2032N, Mid-Atlantic Ridge: A Case of Magmatic Contribution?

    No full text
    The basalt-hosted Semenov-2 hydrothermal field on the Mid-Atlantic Ridge is host to a rather unique Cu-Zn\u2013 rich massive sulfide deposit, which is characterized by high Au (up to 188 ppm, average 61 ppm, median 45 ppm) and Ag (up to 1,878 ppm, average 490 ppm, median 250 ppm) contents. The largest proportion of visible gold is associated with abundant opal-A, which precipitated after a first generation of Cu, Fe, and Zn sulfides and before a second generation of Fe and Cu sulfides. Only rare native gold grains were found in earlier sulfides. Fluid inclusions in opal-A associated with native gold indicate precipitation at 300\ub0 \ub1 40\ub0C from fluids of salinity higher than that of seawater (3.5\u20136.8 wt % NaCl equiv). According to laser ablation-inductively coupled plasma-mass spectrometry analyses, invisible gold is concentrated in secondary covellite (23\u2013227 ppm) rather than in the primary sulfides (1,000 ppm) than all other sulfides (1 are more consistent with a mafic signature. Thermodynamic modeling of hydrothermal fluids produced by reactions between various proportions of seawater and basalt or peridotite at 350\ub0C shows that mineral assemblages broadly similar to those of the Semenov-2 deposit can precipitate from fluids produced in a mafic environment, but that Au and Ag minerals are not predicted to precipitate from such fluids over a wide temperature range. These results suggest that an additional contribution to the hydrothermal system is required in order to achieve saturation in precious metals. A magmatic input is suggested by the occurrence of plagiogranites and tonalites dredged on sea floor in the Semenov area, which could be a potential source of Au-rich magmatic fluids, and by mineralogical and geochemical similarities with magma-related, low- to intermediate-sulfidation epithermal systems, namely high Au and Ag grades, high Au/(Cu + Zn + Pb) and Au/Ag ratios, and presence of Ag, Bi, and Te minerals. The likely crucial role of silicic melts in producing high Au and Ag grades suggests that exploration for precious metal-rich, volcanic-hosted massive sulfide deposits should be primarily directed to sites in which evolved igneous rocks occur on sea floor. Both in modern and ancient mafic-hosted deposits, zones characterized by abundant deposition of silica could be good clues to the presence of significant gold
    corecore