3,113 research outputs found

    Z2Z_2 Topological Order and the Quantum Spin Hall Effect

    Full text link
    The quantum spin Hall (QSH) phase is a time reversal invariant electronic state with a bulk electronic band gap that supports the transport of charge and spin in gapless edge states. We show that this phase is associated with a novel Z2Z_2 topological invariant, which distinguishes it from an ordinary insulator. The Z2Z_2 classification, which is defined for time reversal invariant Hamiltonians, is analogous to the Chern number classification of the quantum Hall effect. We establish the Z2Z_2 order of the QSH phase in the two band model of graphene and propose a generalization of the formalism applicable to multi band and interacting systems.Comment: 4 pages RevTeX. Added reference, minor correction

    Wagner’s Law and Peacock and Wiseman’s Displacement Effect in European Union Countries: A Panel Data Study

    Get PDF
    Wagner’s Law is the fi rst model of public expenditure in the history of public fi nance. It suggests that during the process of economic development the share of public spending in national income tends to expand (Wagner, 1883). Nevertheless, Peacock and Scott in 2000 wrote a paper entitled “The curious attraction of Wagner’s law,” explaining the reasons for why this (apparently) outworn theory is still studied by modern economists. On the other hand, Keynes (1936) considered public spending as an exogenous factor to be used as a policy instrument to infl uence growth. Moreover, Peacock and Wiseman (1961) presented the displacement effect, according to which during times of war tax rates are increased to generate more revenues, sustaining the increase in defense spending. While Peacock and Wiseman (1979) surveys the literature on public expenditure growth. This paper aims to analyze the relationship between public expenditure and aggregate income in European Union countries, for the period 1980-2013, using panel data methodologies. After a brief introduction, a survey of the economic literature on this issue is discussed. Then, panel data tests on stationarity, cross-dependence, cointegration, and causality are shown. Finally, some notes on policy implications conclude the paper

    Theoretical investigation of the evolution of the topological phase of Bi2_{2}Se3_{3} under mechanical strain

    Full text link
    The topological insulating phase results from inversion of the band gap due to spin-orbit coupling at an odd number of time-reversal symmetric points. In Bi2_2Se3_3, this inversion occurs at the Γ\Gamma point. For bulk Bi2_2Se3_3, we have analyzed the effect of arbitrary strain on the Γ\Gamma point band gap using Density Functional Theory. By computing the band structure both with and without spin-orbit interactions, we consider the effects of strain on the gap via Coulombic interaction and spin-orbit interaction separately. While compressive strain acts to decrease the Coulombic gap, it also increases the strength of the spin-orbit interaction, increasing the inverted gap. Comparison with Bi2_2Te3_3 supports the conclusion that effects on both Coulombic and spin-orbit interactions are critical to understanding the behavior of topological insulators under strain, and we propose that the topological insulating phase can be effectively manipulated by inducing strain through chemical substitution

    Spin texture on the Fermi surface of tensile strained HgTe

    Get PDF
    We present ab initio and k.p calculations of the spin texture on the Fermi surface of tensile strained HgTe, which is obtained by stretching the zincblende lattice along the (111) axis. Tensile strained HgTe is a semimetal with pointlike accidental degeneracies between a mirror symmetry protected twofold degenerate band and two nondegenerate bands near the Fermi level. The Fermi surface consists of two ellipsoids which contact at the point where the Fermi level crosses the twofold degenerate band along the (111) axis. However, the spin texture of occupied states indicates that neither ellipsoid carries a compensating Chern number. Consequently, the spin texture is locked in the plane perpendicular to the (111) axis, exhibits a nonzero winding number in that plane, and changes winding number from one end of the Fermi ellipsoids to the other. The change in the winding of the spin texture suggests the existence of singular points. An ordered alloy of HgTe with ZnTe has the same effect as stretching the zincblende lattice in the (111) direction. We present ab initio calculations of ordered Hg_xZn_1-xTe that confirm the existence of a spin texture locked in a 2D plane on the Fermi surface with different winding numbers on either end.Comment: 8 pages, 8 figure

    A Sustainable Approach to Delivering Programmable Peer-to-Peer Offline Payments

    Get PDF
    Payment apps and digital wallets are powerful tools used to exchange e-money via the internet. However, with the progressive disappearance of cash, there is a need for the digital equivalent of physical banknotes to guarantee the same level of anonymity of private payments. Few efforts to solve the double-spending problem exist in P2P payments (i.e., in avoiding the possibility of a payer retaining copies of digital coins in absence of a trusted third party (TTP)), and further research efforts are needed to explore options to preserve the privacy of payments, as per the mandates of numerous central bank digital currency (CBDC) exploratory initiatives, such as the digital euro. Moreover, generic programmability requirements and energetic impacts should be considered. In this paper, we present a sustainable offline P2P payment scheme to face the double-spending problem by means of a one-time program (OTP) approach. The approach consists of wiping the business logic out of a client’s app and allowing financial intermediaries to inject a certified payment code into the user’s device, which will execute (asynchronously and offline) at the time of payment. To do so, we wrap each coin in a program at the time of withdrawal. Then the program exploits the trusted execution environment (TEE) of modern smartphones to transfer itself from the payer to the payee via a direct IoT link. To confirm the validity of the approach, we performed qualitative and quantitative evaluations, specifically focusing on the energetic sustainability of the proposed scheme. Results show that our payment scheme is energetically sustainable as the current absorbed for sending one coin is, at most, ~1.8 mAh on an Apple smartphone. We advance the state-of-the-art because the scheme meets the programmability, anonymity, and sustainability requirements (at the same time)

    Bioinformatics tools for marine biotechnology: A practical tutorial with a metagenomic approach

    Get PDF
    Background: Bioinformatics has pervaded all fields of biology and has become an indispensable tool for almost all research projects. Although teaching bioinformatics has been incorporated in all traditional life science curricula, practical hands-on experiences in tight combination with wet-lab experiments are needed to motivate students. Results: We present a tutorial that starts from a practical problem: finding novel enzymes from marine environments. First, we introduce the idea of metagenomics, a recent approach that extends biotechnology to non-culturable microbes. We presuppose that a probe for the screening of metagenomic cosmid library is needed. The students start from the chemical structure of the substrate that should be acted on by the novel enzyme and end with the sequence of the probe. To attain their goal, they discover databases such as BRENDA and programs such as BLAST and Clustal Omega. Students' answers to a satisfaction questionnaire show that a multistep tutorial integrated into a research wet-lab project is preferable to conventional lectures illustrating bioinformatics tools. Conclusion: Experimental biologists can better operate basic bioinformatics if a problem-solving approach is chosen
    • …
    corecore