215 research outputs found

    (Invited) Two-color soliton meta-atoms and molecules

    Get PDF
    We present a detailed overview of the physics of two-color soliton molecules in nonlinear waveguides, i.e. bound states of localized optical pulses which are held together due to an incoherent interaction mechanism. The mutual confinement, or trapping, of the subpulses, which leads to a stable propagation of the pulse compound, is enabled by the nonlinear Kerr effect. Special attention is paid to the description of the binding mechanism in terms of attractive potential wells, induced by the refractive index changes of the subpulses, exerted on one another through cross-phase modulation. Specifically, we discuss nonlinear-photonics meta atoms, given by pulse compounds consisting of a strong trapping pulse and a weak trapped pulse, for which trapped states of low intensity are determined by a Schrödinger-type eigenproblem. We discuss the rich dynamical behavior of such meta-atoms, demonstrating that an increase of the group-velocity mismatch of both subpulses leads to an ionization-like trapping-to-escape transition. We further demonstrate that if both constituent pulses are of similar amplitude, molecule-like bound-states are formed. We show that -periodic amplitude variations permit a coupling of these pulse compound to dispersive waves, resulting in the resonant emission of Kushi-comb-like multi-frequency radiation

    Crossover from two-frequency pulse compounds to escaping solitons

    Get PDF
    The nonlinear interaction of copropagating optical solitons enables a large variety of intriguing bound-states of light. We here investigate the interaction dynamics of two initially superimposed fundamental solitons at distinctly different frequencies. Both pulses are located in distinct domains of anomalous dispersion, separated by an interjacent domain of normal dispersion, so that group velocity matching can be achieved despite a vast frequency gap. We demonstrate the existence of two regions with different dynamical behavior. For small velocity mismatch we observe a domain in which a single heteronuclear pulse compound is formed, which is distinct from the usual concept of soliton molecules. The binding mechanism is realized by the mutual cross phase modulation of the interacting pulses. For large velocity mismatch both pulses escape their mutual binding and move away from each other. The crossover phase between these two cases exhibits two localized states with different velocity, consisting of a strong trapping pulse and weak trapped pulse. We detail a simplified theoretical approach which accurately estimates the parameter range in which compound states are formed. This trapping-to-escape transition allows to study the limits of pulse-bonding as a fundamental phenomenon in nonlinear optics, opening up new perspectives for the all-optical manipulation of light by light

    Two-color pulse compounds in waveguides with a zero-nonlinearity point

    Full text link
    We study incoherently coupled two-frequency pulse compounds in waveguides with single zero-dispersion and zero-nonlinearity points. In such waveguides, supported by a negative nonlinearity, soliton dynamics can be obtained even in domains of normal dispersion. We demonstrate trapping of weak pulses by solitary-wave wells, forming nonlinear-photonics meta-atoms, and molecule-like bound-states of pulses. We study the impact of Raman effect on these pulse compounds, finding that, depending on the precise subpulse configuration, they decelerate, accelerate, or are completely unaffected. Our results extend the range of systems in which two-frequency pulse compounds can be expected to exist and demonstrate further unique and unexpected behavior

    Two-color soliton meta-atoms and molecules

    Full text link
    We present a detailed overview of the physics of two-color soliton molecules in nonlinear waveguides, i.e. bound states of localized optical pulses which are held together due to an incoherent interaction mechanism. The mutual confinement, or trapping, of the subpulses, which leads to a stable propagation of the pulse compound, is enabled by the nonlinear Kerr effect. Special attention is paid to the description of the binding mechanism in terms of attractive potential wells, induced by the refractive index changes of the subpulses, exerted on one another through cross-phase modulation. Specifically, we discuss nonlinear-photonics meta atoms, given by pulse compounds consisting of a strong trapping pulse and a weak trapped pulse, for which trapped states of low intensity are determined by a Schr\"odinger-type eigenproblem. We discuss the rich dynamical behavior of such meta-atoms, demonstrating that an increase of the group-velocity mismatch of both subpulses leads to an ionization-like trapping-to-escape transition. We further demonstrate that if both constituent pulses are of similar amplitude, molecule-like bound-states are formed. We show that z-periodic amplitude variations permit a coupling of these pulse compound to dispersive waves, resulting in the resonant emission of Kushi-comb-like multi-frequency radiation

    Получение керамических мембран на основе оксида алюминия для очистки воды

    Get PDF
    We performed DNA microarray-based comparative genomic hybridization to identify somatic alterations specific to melanoma genome in 60 human cell lines from metastasized melanoma and from 44 corresponding peripheral blood mononuclear cells. Our data showed gross but nonrandom somatic changes specific to the tumor genome. Although the CDKN2A (78%) and PTEN (70%) loci were the major targets of mono-allelic and bi-allelic deletions, amplifications affected loci with BRAF (53%) and NRAS (12%) as well as EGFR (52%), MITF (40%), NOTCH2 (35%), CCND1 (18%), MDM2 (18%), CCNE1 (10%), and CDK4 (8%). The amplified loci carried additional genes, many of which could potentially play a role in melanoma. Distinct patterns of copy number changes showed that alterations in CDKN2A tended to be more clustered in cell lines with mutations in the BRAF and NRAS genes; the PTEN locus was targeted mainly in conjunction with BRAF mutations. Amplification of CCND1, CDK4, and other loci was signifi cantly increased in cell lines without BRAF-NRAS mutations and so was the loss of chromosome arms 13q and 16q. Our data suggest involvement of distinct genetic pathways that are driven either through oncogenic BRAF and NRAS mutations complemented by aberrations in the CDKN2A and PTEN genes or involve amplification of oncogenic genomic loci and loss of 13q and 16q. It also emerges that each tumor besides being affected by major and most common somatic genetic alterations also acquires additional genetic alterations that could be crucial in determining response to small molecular inhibitors that are being currently pursued

    Resonant Kushi-comb-like multi-frequency radiation of oscillating two-color soliton molecules

    Get PDF
    Nonlinear waveguides with two distinct domains of anomalous dispersion can support the formation of molecule-like two-color pulse compounds. They consist of two tightly bound subpulses with frequency loci separated by a vast frequency gap. Perturbing such a two-color pulse compound triggers periodic amplitude and width variations, reminiscent of molecular vibrations. With increasing strength of perturbation, the dynamics of the pulse compound changes from harmonic to nonlinear oscillations. The periodic amplitude variations enable coupling of the pulse compound to dispersive waves, resulting in the resonant emission of multi-frequency radiation. We demonstrate that the location of the resonances can be precisely predicted by phase-matching conditions. If the pulse compound consists of a pair of identical subpulses, inherent symmetries lead to degeneracies in the resonance spectrum. Weak perturbations lift existing degeneracies and cause a splitting of the resonance lines into multiple lines. Strong perturbations result in more complex emission spectra, characterized by well separated spectral bands caused by resonant Cherenkov radiation and additional four-wave mixing processes

    Soliton compression and supercontinuum spectra in nonlinear diamond photonics

    Get PDF
    We numerically explore synthetic crystal diamond for realizing novel light sources in ranges which are up to now difficult to achieve with other materials, such as sub-10-fs pulse durations and challenging spectral ranges. We assess the performance of on-chip diamond waveguides for controlling light generation by means of nonlinear soliton dynamics. Tailoring the cross-section of such diamond waveguides allows to design dispersion profiles with custom zero-dispersion points and anomalous dispersion ranges exceeding an octave. Various propagation dynamics, including supercontinuum generation by soliton fission, can be realized in diamond photonics. In stark contrast to usual silica-based optical fibers, where such processes occur on the scale of meters, in diamond millimeter-scale propagation distances are sufficient. Unperturbed soliton-dynamics prior to soliton fission allow to identify a pulse self-compression scenario that promises record-breaking compression factors on chip-size propagation lengths

    Inference of hidden structures in complex physical systems by multi-scale clustering

    Full text link
    We survey the application of a relatively new branch of statistical physics--"community detection"-- to data mining. In particular, we focus on the diagnosis of materials and automated image segmentation. Community detection describes the quest of partitioning a complex system involving many elements into optimally decoupled subsets or communities of such elements. We review a multiresolution variant which is used to ascertain structures at different spatial and temporal scales. Significant patterns are obtained by examining the correlations between different independent solvers. Similar to other combinatorial optimization problems in the NP complexity class, community detection exhibits several phases. Typically, illuminating orders are revealed by choosing parameters that lead to extremal information theory correlations.Comment: 25 pages, 16 Figures; a review of earlier work
    corecore