1,486 research outputs found

    Contract Development In A Matching Market: The Case of Kidney Exchange

    Get PDF
    We analyze a new transplant innovation — Advanced Donation, referred to by some as a kidney “gift certificate,” “layaway plan,” or “voucher — as a case study offering insights on both market and contract development. Advanced Donation provides an unusual window into the evolution of the exchange of a single good — a kidney for transplantation — from gift, to simple barter, to exchange with a temporal separation of obligations that relies solely on trust and reputational constraints for enforcement, to a complex matching market in which the parties rely, at least in part, on formal contract to define and clarify their obligations to each other. The transplant community, however, has historically viewed formal contracts in the transplant setting with discomfort, and that traditional discomfort remains evident in current Advanced Donation practice. We conclude that the use of formal contracts in Advanced Donation is likely inadvertent, and the contracts, in a number of ways, are inadequate to tackle the complex, nonsimultaneous exchange of kidneys in which patients donate a kidney before their intended recipients have been matched with a potential donor

    Stability of a horizontal viscous fluid layer in a vertical time periodic electric field

    Full text link
    The stability of a horizontal interface between two viscous fluids, one of which is conducting and the other is dielectric, acted upon by a vertical time-periodic electric field is considered. The two fluids are bounded by electrodes separated by a finite distance. By means of Floquet theory, the marginal stability curves are obtained, thereby elucidating the dependency of the critical voltage and wavenumber upon the fluid viscosities. The limit of vanishing viscosities is shown to be in excellent agreement with the marginal stability curves predicted by means of a Mathieu equation. The methodology to obtain the marginal stability curves developed here is applicable to any arbitrary but time periodic-signal, as demonstrated for the case of a signal with two different frequencies. As a special case, the marginal stability curves for an applied ac voltage biased by a dc voltage are depicted. It is shown that the mode coupling caused by the normal stress at the interface due to the electric field leads to appearance of harmonic modes and subharmonic modes. This is in contrast to the application of a voltage with a single frequency which always leads to a harmonic mode. Whether a harmonic or subharmonic mode is the most unstable one depends on details of the excitation signal. It is also shown that the electrode spacing has a distinct effect on the stability bahavior of the system

    Wavelength Shifting Phoswich Detectors for Superior Depth-of-Interaction Resolution

    Get PDF
    In order to simultaneously achieve both high spatial resolution and high sensitivity in small Positron Emission Tomography (PET) systems, scintillation detectors must be long in the radial direction as well as able to provide depth-of-interaction (DOI) information. DOI information is typically provided by constructing detectors from two or more layers of scintillators that are identifiable due to their different decay times. This approach has worked well in tomographs such as the High Resolution Research Tomograph (HRRT, CTI PET Systems, Inc.) in which the emission and excitation bands of the scintillator layers do not overlap each other. However, many potentially important pairs of scintillator crystals exist in which the emission of one crystal is, in fact, absorbed and re-emitted by the second crystal, thus impacting the pulse shape discrimination process used to identify the scintillator layers. These potentially useful pairs of scintillators are unlikely to be implemented in phoswich detectors without a comprehensive understanding of the complex emission that results when the light of one crystal is absorbed by the second crystal and then reemitted. Our objective is to develop a fundamental understanding of the optical phenomena that occur in phoswich detectors and to exploit these phenomena to achieve improved spatial resolution in small high sensitivity PET scanners

    Maxwell stress in fluid mixtures

    Full text link
    We examine the structure of Maxwell stress in binary fluid mixtures under an external electric field and discuss its consequence. In particular, we show that, in immiscible blends, it is intimately related to the statistics of domain structure. This leads to a compact formula, which may be useful in the investigation of electro-rheological effects in such systems. The stress tensor calculated in a phase separated fluid under a steady electric field is in a good agreement with recent experiments.Comment: 5 page

    Combustion Stability Characteristics of the Project Morpheus Liquid Oxygen/Liquid Methane Main Engine

    Get PDF
    The Project Morpheus liquid oxygen (LOX) / liquid methane rocket engines demonstrated acousticcoupled combustion instabilities during sealevel groundbased testing at the NASA Johnson Space Center (JSC) and Stennis Space Center (SSC). Highamplitude, 1T, 1R, 1T1R (and higher order) modes appear to be triggered by injector conditions. The instability occurred during the Morpheusspecific engine ignition/start sequence, and did demonstrate the capability to propagate into mainstage. However, the instability was never observed to initiate during mainstage, even at low power levels. The Morpheus main engine is a JSCdesigned ~5,000 lbfthrust, 4:1 throttling, pressurefed cryogenic engine using an impinging element injector design. Two different engine designs, named HD4 and HD5, and two different builds of the HD4 engine all demonstrated similar instability characteristics. Through the analysis of more than 200 hot fire tests on the Morpheus vehicle and SSC test stand, a relationship between ignition stability and injector/chamber pressure was developed. The instability has the distinct characteristic of initiating at high relative injection pressure drop (dP) at low chamber pressure (Pc); i.e., instabilities initiated at high dP/Pc at low Pc during the start sequence. The high dP/Pc during start results during the injector /chamber chillin, and is enhanced by hydraulic flip in the injector orifice elements. Because of the fixed mixture ratio of the existing engine design (the main valves share a common actuator), it is not currently possible to determine if LOX or methane injector dP/Pc were individual contributors (i.e., LOX and methane dP/Pc typically trend in the same direction within a given test). The instability demonstrated initiation characteristic of starting at or shortly after methane injector chillin. Colder methane (e.g., subcooled) at the injector inlet prior to engine start was much more likely to result in an instability. A secondary effect of LOX subcooling was also possibly observed; greater LOX sub cooling improved stability. Some tests demonstrated a lowamplitude 1L1T instability prior to LOX injector chillin. The Morpheus main engine also demonstrated chug instabilities during some engine shutdown sequences on the flight vehicle and SSC test stand. The chug instability was also infrequently observed during the startup sequence. The chug instabilities predictably initiated at low dP/Pc at low Pc. The chug instabilities were always selflimiting; startup chug instabilities terminated during throttleup and shutdown chug instabilities decayed by shutdown termination

    Combustion Stability Characteristics of the Project Morpheus Liquid Oxygen / Liquid Methane Main Engine

    Get PDF
    The project Morpheus liquid oxygen (LOX) / liquid methane (LCH4) main engine is a Johnson Space Center (JSC) designed ~5,000 lbf-thrust, 4:1 throttling, pressure-fed cryogenic engine using an impinging element injector design. The engine met or exceeded all performance requirements without experiencing any in- ight failures, but the engine exhibited acoustic-coupled combustion instabilities during sea-level ground-based testing. First tangential (1T), rst radial (1R), 1T1R, and higher order modes were triggered by conditions during the Morpheus vehicle derived low chamber pressure startup sequence. The instability was never observed to initiate during mainstage, even at low power levels. Ground-interaction acoustics aggravated the instability in vehicle tests. Analysis of more than 200 hot re tests on the Morpheus vehicle and Stennis Space Center (SSC) test stand showed a relationship between ignition stability and injector/chamber pressure. The instability had the distinct characteristic of initiating at high relative injection pressure drop at low chamber pressure during the start sequence. Data analysis suggests that the two-phase density during engine start results in a high injection velocity, possibly triggering the instabilities predicted by the Hewitt stability curves. Engine ignition instability was successfully mitigated via a higher-chamber pressure start sequence (e.g., ~50% power level vs ~30%) and operational propellant start temperature limits that maintained \cold LOX" and \warm methane" at the engine inlet. The main engine successfully demonstrated 4:1 throttling without chugging during mainstage, but chug instabilities were observed during some engine shutdown sequences at low injector pressure drop, especially during vehicle landing

    Binding Mechanisms in Visual Perception and Their Link With Neural Oscillations: A Review of Evidence From tACS

    Get PDF
    Neurophysiological studies in humans employing magneto- (MEG) and electro- (EEG) encephalography increasingly suggest that oscillatory rhythmic activity of the brain may be a core mechanism for binding sensory information across space, time, and object features to generate a unified perceptual representation. To distinguish whether oscillatory activity is causally related to binding processes or whether, on the contrary, it is a mere epiphenomenon, one possibility is to employ neuromodulatory techniques such as transcranial alternating current stimulation (tACS). tACS has seen a rising interest due to its ability to modulate brain oscillations in a frequency-dependent manner. In the present review, we critically summarize current tACS evidence for a causal role of oscillatory activity in spatial, temporal, and feature binding in the context of visual perception. For temporal binding, the emerging picture supports a causal link with the power and the frequency of occipital alpha rhythms (8–12 Hz); however, there is no consistent evidence on the causal role of the phase of occipital tACS. For feature binding, the only study available showed a modulation by occipital alpha tACS. The majority of studies that successfully modulated oscillatory activity and behavioral performance in spatial binding targeted parietal areas, with the main rhythms causally linked being the theta (~7 Hz) and beta (~18 Hz) frequency bands. On the other hand, spatio-temporal binding has been directly modulated by parieto-occipital gamma (~40–60 Hz) and alpha (10 Hz) tACS, suggesting a potential role of cross-frequency coupling when binding across space and time. Nonetheless, negative or partial results have also been observed, suggesting methodological limitations that should be addressed in future research. Overall, the emerging picture seems to support a causal role of brain oscillations in binding processes and, consequently, a certain degree of plasticity for shaping binding mechanisms in visual perception, which, if proved to have long lasting effects, can find applications in different clinical populations

    Nonlinear dynamics of the interface of dielectric liquids in a strong electric field: Reduced equations of motion

    Full text link
    The evolution of the interface between two ideal dielectric liquids in a strong vertical electric field is studied. It is found that a particular flow regime, for which the velocity potential and the electric field potential are linearly dependent functions, is possible if the ratio of the permittivities of liquids is inversely proportional to the ratio of their densities. The corresponding reduced equations for interface motion are derived. In the limit of small density ratio, these equations coincide with the well-known equations describing the Laplacian growth.Comment: 10 page

    Advances in Non-Contact Thermal-Wave Imaging with Infrared Detection

    Get PDF
    We are making further advances in non-destructive and non-contact thermal imaging with infrared detection. We employ a chopped and scanned electron beam as heat source, a cooled HgCdTe infrared detector as temperature sensor, and digital processing of the measured temperature pattern for display and storage. The results give a convincing, high contrast image of subsurface structures
    • …
    corecore